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Abstract: Considering the plethora of private and sensitive information stored in
smartphone and tablets, it is easy to understand the reason why attackers develop
everyday more and more aggressive malicious payloads with the aim to exfiltrate
our data. One of the last trend in mobile malware landascape is represented by the
so-called ransomware, a threat capable to lock the user interface and to cipher the
data of the mobile device under attack. In this paper we propose an approach to
model an Android application in terms of timed automaton by considering system
call traces i.e., performing a dynamic analysis. We obtain encouraging results in the
experimental analysis we performed exploiting real-world (ransomware and legiti-
mate) Android applications.
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1 Introduction

Researchers discovered several cases of malware on the official Android app store, and while all
of the dangerous apps were taken down rapidly, they still managed to infect thousands of devices
worldwide'.

However, even more, severe mobile malware hides in applications downloaded from shady
Internet sources. For instance, the DoubleLocker, LokiBot, GhostClicker, and Sockbot malware
families are just a few of examples that target Android mobile users daily.

The most worrying fact is that out of all 10 million shady Android apps, the majority (77%)
turned out to be malicious. The remaining 23% are potentially unwanted applications’.

Sophos security experts highlight that ransomware is a problem for Android users>.

Mobile ransomware is a kind of malware afflicting mobile devices, for instance tablets and
smartphones [ASKA16]. A cybercriminal can use mobile malware to steal sensitive data from a
smartphone or lock a device, before demanding payment to return the data to the user or unlock
the device.

After the malware is downloaded onto a device, it will show a fake message accusing the
victim of unlawful engagement before encrypting files and locking the phone. After the payment

Uhttps://www.techrepublic.com/article/malware-laden-apps-in-google- play- store-mine-cryptocurrency-from-mobile- victims/
2 https://www.2-spyware.com/malware-forecast-for-2018-more-ransomware-android-mac-viruses
3 https://www.sophos.com/en-us/en-us/medialibrary/PDFs/technical- papers/malware-forecast-2018.pdf?la=en
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Timestamp  System call

1 recv
1) recv
t3 recv
ta read
ts futex

Table 1: A system call trace fragment.

is processed, often via Bitcoin, the ransomware will send a code to unlock the phone or decrypt
the data [IM07, QWR18].

Ransomware writers leverage users fear from loosing valuable data to obtain the payment
of ransoms [MMMSI18]. In particular, in the mobile device realm, as opposed to other threats
that silently try to get into possession of data by copying them and leaking through network
[CMN 18], ransomware denies access to data to the users either by encryption or simply by
locking the device and scaring users (i.e., data are not encrypted, but the device is locked with
a message that makes the user believe that data have been encrypted) [AMS18]. In some cases
even paying the requested ransom does not guarantee that the access to the data will be restored
[MNS16].

Usually Android malware writers modify some existing malware, merging together parts of
different existing malicious codes [XZM ™" 17]. This explains also why Android malware is usu-
ally grouped in families: in fact, given this way of generating Android malware, the malware
belonging to the same family shares common parts of code and behaviors [MMM17].

In this paper an approach to model Android applications in terms of timed automata is pro-
posed, with the aim to dynamically discriminate between legitimate and ransomware applica-
tions.

2 The Method

The proposed approach consists in two main phases: the Formal Model Creation and the Formal
Model Verification.

The Formal Model Creation phase output is the formal model representing the Android appli-
cation under analysis.

In this step a timed automaton from the system call traces is generated. Whether in the system
call trace the same system call is repeated between consecutive temporal instances the automaton
will contain a loop. To better understand how the proposed method build the automaton from the
system calls let us consider the system call trace fragment depicted in 1

As shown from the example in Table 1, the system call traces exhibit for three consecutive
timestamp the recv system call, subsequently it exhibits the read and the futex system calls.

From the system call trace frament in Table 1 in Figure 1 we show the relative automaton.
The automaton generated from the recv system call will contain a loop for the ¢, #; and 3 time
intervals (whether it is repeated three times in the system call trace). The exit condition from the
loops is guaranteed by a guard, while the entering one is guaranteed from an invariant. In detail,
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y1 <3
write := write + 1

@
yi>3 Q

fead = read —i—@tex = futex—igD

Figure 1: An example of automaton generated from a system call trace.

recv:=recv+1

two different clocks are considered for each automaton: the first one (i.e., x) to respect the loop
entering condition, while the second one (i.e., y) to respect the exit one.

The Formal Model Verification receives as input a timed automaton built in the previous phase
and a set of timed temporal logic properties. In detail timed temporal logic properties are con-
sidered are aimed to detect whether an malicious behaviour is occurring.

The set of logic properties is checked against the timed automata obtained using the UPPAAL
model checker. Whether the UPPAAL formal verification environment outputs true when is
verifying a timed temporal logic property on a network of timed automata, it means that the
proposed method labelled the formal model is belonging to the ransomware specified by the
analysed formula. Otherwise, the formal verification environment outputs false, meaning that
the model under analysis is not belonging to the attacks described in the analysed formula.

3 Experimental Evaluation

We performed an experiment aimed to evaluate the effectiveness of the proposed method. Dif-
ferent applications, legitimate and ransomware, are considered.

The aim of the experiment is to evaluate the effectiveness of the the proposed model based on
timed automata to discriminate between ransomware and legitimate Android samples.

A dataset made of 100 legitimate and 100 ransomware Android applications was collected:
legitimate applications by several categories (call & contacts, education, entertainment, GPS
& travel, internet, lifestyle, news & weather, productivity, utilities, business, communication,
email & SMS, fun & games, health & fitness, live wallpapers, personalization) were downloaded
from Google Play (and then controlled by Google Bouncer, a Google service that checks each
app for malicious behaviour before publishing it on the official market [CMV16]) from January
to June 2019, while ransomware applications belonging to 10 widespread ransomware families
were obtained through the VirusTotal API #. All the applications were checked by means of

4 https://developers.virustotal.com/reference
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Table 2: The Android ransomware families involved in the evaluation with details related to the
discovery year.

Family description Cipher Locker year
doublelocker change the PIN of the device X X 2017
fusob It demands to pay a fine from $100 to $200 USD X 2015
koler Mobile version of Reveton ransomware X 2014
locker It shows a ransom messages X 2014
lockerpin It is able to set a PIN on the device X 2015
pletor Mobile version of Cryptolocker X 2014
porndroid It resets the screen-lock PIN X 2015
simplelocker It encrypt SD cad file using the AES cipher X 2014
svpeng Android banking malware X 2017
xbot It steals victims’ banking credentials X X 2016

Table 3: Experimental analysis result.

Precision Recall F-Measure
0.96 0.97 0.96

VirusTotal 7, a service that runs 57 different antimalware on the submitted applications. The
analysis confirmed that our trusted samples did not contain any known malicious payload, while
the malicious samples contained ransomware specific family payloads.

Table 2 shows the widespread Android ransomware families evaluated in the study.

We executed the Android application in a simulated environment with the aim to collect the
syscall traces. From the traces belonging to the considered 200 different applications (100 legit-
imate and 100 ransomware) we build the models representing the application under analysis.

To evaluate the effectiveness of the proposed method in Android ransomware detection, three
different metrics are considered: Precision, Recall and F-Measure.

The Precision has been computed as the proportion of the examples that truly belong to class X
among all those which were assigned to the class. It is the ratio of the number of relevant records
retrieved to the total number of irrelevant and relevant records retrieved: Precision = tprp’
where #p indicates the number of true positives and fp indicates the number of false positives.

The Recall has been computed as the proportion of examples that were assigned to class X,
among all the examples that truly belong to the class, i.e., how much part of the class was
captured. It is the ratio of the number of relevant records retrieved to the total number of relevant
records: Recall = tpff n where fp indicates the number of true positives and fn indicates the
number of false negatives.

The F-Measure is a measure of a test’s accuracy. This score can be interpreted as a weighted
average of the precision and recall: F-Measure = 2 % %’%.

The obtained results are shown in Table 3.

As shown from the experimental results, the proposed method obtains a precision equal to

5 https://www.virustotal.com/
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0.96 and a recall of 0.97 confirming their effectiveness in Android ransomware detection.

4 Related Work

The main difference between ransomware and other widespread mobile malware types is in their
behaviour: as demonstrated in [ZJ12a], Android malware generally focuses on remaining hidden
while gathering and sending to the attackers user sensitive and private information. Ransomware,
instead, leverages the knowledge of its presence by users to obtain the payment of a ransom. Due
to this, current methods proposed by the research community for the identification of malware
are not necessarily effective in detecting ransomware, as the recent rise in ransomware attacks
demonstrates. As also stated in [AZM15], this ineffectiveness of traditional methods, when
used alone, exposes more than a billion users to this threat. Effective solutions for detection of
ransomware on mobile devices are needed, but up to date, there are only a few works addressing
this issue in the literature.

The first method that introduced ransomware detection for Android is HelDroid [AZM15].
This tool includes a text classifier based on NLP features, a lightweight smali emulation tech-
nique to detect locking strategies, and the application for detecting file-encrypting flows. This
tool includes a text classifier based on NLP features, a lightweight smali emulation technique to
detect locking strategies, and the application for detecting file-encrypting flows. The main weak-
ness of HelDroid is that it strongly depends on a text classifier: as a matter of fact, the authors
trained it on generic threatening phrases, similar to those that typically appear in ransomware or
scareware. From the performance point of view, they identify rightly 375 Android ransomware
on a dataset composed of 443 samples: 11 ransomware were not detected due to unsupported
language (e.g., Spanish, Russian) with 9 out of 12,842 false positives.

In [YYQT15], the authors propose a performance tool in order to help to understand what
can be done to cope with Android ransomware detection. However, this method remained at the
level of a proposal, with no implementation. Therefore, there are no results that can prove its
effectiveness.

Song et al. [SKL16] designed an approach with the aim of identifying mobile ransomware
by using process monitoring. They consider features representing the I/O rate as well as the
CPU and memory usage. They evaluate the proposed method with only one ransomware sample
developed by the authors. This sample has the ability to encrypt the file by using AES.

R-PackDroid [MMG™17] implements an approach to detect Android ransomware considering
the API calls frequency. Authors evaluated a real-world ransomware dataset, demonstrating that
R-PackDroid can detect novel ransomware only using previously released training samples.

An approach based on formal methods that is able to detect Android ransomware and to iden-
tify the malicious sections in the application code is described in [MNSV 16, CMN " 17]. Starting
from the payload behaviour definition, the authors formulate logic rules that are later applied to
detect ransomware. The main weakness of the proposed method is represented by the human
analyst effort required to build the logic rules. As a matter of fact the proposed method foresees
the payload identification but the process rule building has to be done by hand, and as such, is a
time consuming task.

A hybrid static-dynamic approach is proposed in [GG17]. The static approach is based on
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text and image classification as well as on API calls and application permissions. The dynamic
approach is based on sequences of API calls that are compared, with a periodicity of five min-
utes, against malicious sequences identified for each malware family. Dynamic detection takes a
minimum of five minutes to identify a ransomware sample.

Researchers in [FMM ™ 17] propose a hybrid method able to effectively counter ransomware.
The proposed method first examines applications to be used on a device prior to their installation
(static approach) and then observes their behavior at runtime and identifies if the system is under
attack (dynamic approach). To detect ransomware, the static detection method uses the frequency
of opcodes while the dynamic detection method considers CPU usage, memory usage, network
usage and system call statistics.

The main difference between the discussed methods and the one we propose is represented by
the adoption of a dynamic analysis to build a timed automaton.

5 Conclusion Remarks

In this paper we propose to model Android applications in terms of timed automata. We consider
system call traces to build the proposed model. The experiment is aimed to demonstrate the abil-
ity to discriminate between legitimate and ransomware applications. We evaluate 200 real-world
applications, obtaining an F-Measure equal to 0.96. Future works will consider to experiment
the proposed method on an extended dataset of application and to apply the proposed method on
applications developed for Apple mobile environment.
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