
Electronic Communications of the EASST
Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2009
(WowKiVS 2009)

Implementation of a User-Centric Context-Aware Playground

Sian Lun Lau, Niklas Klein, Andreas Pirali, Immanuel König and Klaus David

11 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Implementation of a User-Centric Context-Aware Playground

Sian Lun Lau, Niklas Klein, Andreas Pirali, Immanuel König and Klaus David

comtec@uni-kassel.de, http://www.comtec.eecs.uni-kassel.de/
Chair for Communication Technology

University of Kassel

Abstract: Since the introduction of the ubiquitous computing vision by Mark Weiser,
we observed quite some research from various R&D projects as well as groups that
focused on different aspects in the area of context-awareness. However, there is
yet no result which we can easily apply in a real environment. The context-aware
service development and deployment process seldom focused on reusability and re-
alistic implementation issues. We believe these issues can be tackled by proposing a
complete context-aware system package. In this package both developers and users
will be supported. This idea is realised at our department as a context-aware play-
ground. This paper explains the observation on current work and the shortcomings,
and proposes how the context-aware playground approach can be a solution.

Keywords: Context-Awareness, Implementation, User-centric, Service Creation

1 Introduction

In the past decade we witnessed the emergence of context-awareness related work. Initiated by
the vision from Mark Weiser [Wei99], the different efforts aim to realise an environment where
devices and applications assist users1 in their everyday living by sensing and understanding avail-
able contexts. Dey defined context in his work as ”any information that can be used to charac-
terise the situation of entities” [Dey01]. Some of the prominent research results are Dey’s Con-
text Toolkit and Schilit’s context-aware prototype using the ParcTAB infrastructure [SAW94].
There are also efforts in bringing context-awareness into the area of smart environment, such
as offices and homes. The Gator Tech Smart House [HME+05], the Aware Home of the Geor-
gia Tech [KOA+99] and the MavHome Project of the University of Texas at Arlington [DC06]
researched on smart home where intelligent systems use different acquired contexts from respec-
tive environments to provide automation and adaptation.

As we analysed these work, we realised that most of the work focused on the demonstration of
the ideology of context-awareness. Among them we observed an abundance of proof of concept
results, but they worked only in a closed environment. It was partly due to the absence of
suitable non-prototype devices, such as ready-to-deploy sensors and hardware. In the early stages
many of the scenarios could only be tested in simulation and mock-ups. The various context-
aware platforms and architectures were only usable in respective chosen scenarios. The software
components are statically created according to the implementation design, hence making them
hard-coded applications that are only applicable in the designed scenarios [DHB+04, ZBM04].

1 In this paper the word user is synonymous with end-user

1 / 11 Volume 17 (2009)

mailto:comtec@uni-kassel.de
http://www.comtec.eecs.uni-kassel.de/


Implementation of a User-Centric Context-Aware Playground

As far as we know, there is a lack of practical implementation of context-aware systems where
reuse and reimplementation of tools and platform in real scenarios can be carried out. As an
example, it is still not possible to select an existing context-aware system and deploy any desired
sensor device and actuators to test or achieve context-aware adaptation for a new application
scenario. This was due to the nature of the past and current realisation approaches - there was
no focus on achieving a complete context-aware hardware and software package for all parties
involved in this area. The word complete here does not mean that the solution can solve every
single possible need. We define a complete package as a solution that considers the needs and
requirements for a viable implementation that satisfies all parties involved in the development
and deployment cycle.

We foresee that the users of the proposed system can decide individual application domains
that suit their needs. For example, user John can select freely combination of three sensors to
enable adaptation of his lighting systems, while another user Jane can select two other contexts
on top of the three sensors used by John for a multi-modal news display service. In other words,
context-aware system designers and developers do not make the decision on the potential ap-
plications - the users do. The former are responsible to focus on component and functionality
implementation instead. Similar to the usage of current computing systems, hardware and soft-
ware provider deliver different components that build a computer, while a user decides how the
computer will serve him - it can be used as a modern typing machine, a multimedia device, a
gateway to the World Wide Web, all three of them or something completely different.

The above mentioned vision is what we call a user-centric context-aware system. This system
provides a complete and open solution that integrates needed devices and functionality for poten-
tial users. Users are free to use this system in various environments, such as their home, office,
vehicle and etc. Now is a good time to combine past and current experiences and technologies
to realise this vision. It would be a solution that considers both theoretical and practical require-
ments. The implementation of this vision is partly realised in our ongoing smart meeting room
project, where we utilize various market available sensors and context processing approaches to
perform adaptation and prediction of service behaviours common to a meeting room environ-
ment.

We see this implementation as a context-aware playground, where we wish to achieve two
goals:

1. We would like to investigate how developers can be supported in the process of develop-
ment. This includes the development of different actuators for a given environment, and
integration of sensor devices.

2. We need to support users creating desired context-aware applications using components
provided by the developers. Users should not be overwhelmed by the complexity of tech-
nology, since they do not necessarily posses sufficient technical expertise.

This paper will present our proposal of the solution. The structure of the paper is as following:
Section 2 presents the concept and approach, where the requirements and the proposed architec-
ture will be detailed. Section 3 elaborates our proposed implementation. In the Section 4 we will
conclude the paper and present our next steps.

Proc. WowKiVS 2009 2 / 11



ECEASST

2 Our Concept/Approach

If we wish to offer a context-aware system as a playground for potential users to create their own
applications, the underlying architecture needs to support the respective requirements. We use
rooms as a general depiction of a possible scenario in order to highlight the requirements we have
observed throughout our work. These requirements will be applied in the design of the context-
aware system architecture. In this section we will first present the requirements using rooms as
an implementation scenario. This is followed by a brief overview of the proposed architecture.
We will also discuss shortly the rationale behind this idea.

2.1 Scenario and Requirements

Rooms normally serve a special purpose like office rooms, bath rooms or meeting rooms. De-
pending on the purpose of a room, there are unique situations in the room, like meetings or
presentations in a meeting room. These situations have well-defined characteristics and the per-
sons in the room have recurring tasks to fulfil. If a system is able to detect these situations
through the use of sensors, it can then adapt the room to the situation. Adaptation in this case
could be simple things such as the adjustment of the lights or the temperature. It is also possible
to directly assist participants in the room, e.g. by automatically offering voice controlled meeting
protocols or starting a projector and displaying a presentation, as soon as someone stands in front
of the presentation screen.

Today, rooms, like office rooms or meetings rooms, and even living rooms, are equipped with
a lot of electronic devices. There are television sets, phones, hi-fi systems, projectors, digital
picture frames and many more. These electronic devices nowadays are often equipped with
fixed or wireless LAN connectivity and have hard disk drives installed. The devices often have
full-fledged operating systems like Microsoft Windows or Linux. Additionally, there are home
automation devices that enable the control of light, heater and roller shutters. Therefore, there
are already many potential devices to be controlled in an automated way.

On the other hand, there are various sensors available on the market. Light sensors, tem-
perature sensors, acceleration sensors and humidity sensors as well as light barriers are cheap
electronic components today. Video and audio can serve as well as rich sources of context data
and are still active research areas. Nevertheless, there are still very few solutions on how to
combine the available sensors and actuators as a complete package. There lacks a convenient
package that is deployable as a product to enable context aware rooms and is easily manageable
by the costumers.

To achieve this we have to overcome several obstacles. From a consistent architecture with
well defined APIs for sensors and actuators to a convenient tool set for developers and users we
have to provide well designed and concerted components.

Based on this basis, the architecture has to deal with five important requirements:

1. Support for heterogeneity
The sensors in the room are connected with each others in various ways. Some have wire-
less network adapters or Ethernet adapters and are connected over network with a central
server. Other uses technologies like ZigBee, Bluetooth or USB. Some of the sensors are
directly connected to the central server, others to distributed devices, which are connected

3 / 11 Volume 17 (2009)



Implementation of a User-Centric Context-Aware Playground

to the central server over wireless or fixed network connections.
Therefore, the first requirement is to hide the heterogeneity to the developers in a way that
allows the developer to concentrate on his specific problem without having to spend time
on communication protocols.

2. High level context
The raw sensor data normally is too technical for users to understand, e.g. a user may
want to refer to a context like ”warm” instead of referring to ”between 20◦ Celsius and
28◦ Celsius”. Another example is the interpretation of GPS coordinates to location names,
such as [51.311182,9.473184] can be represented as ”My Office”.
Therefore, the second requirement is the support for high level context. High level context
is context data calculated from raw sensors data to represent the context in more abstract
way, which is more readable and understandable to the user.

3. Automatic intelligent distribution
Depending on the number and complexity of calculations, it is possible that the consump-
tion of time and energy is critical.
Therefore, the third requirement is the support for automatic intelligent distribution (AID).
AIDs goal is to distribute the calculation on the available devices to reduce the burden of
the devices which are less capable in terms of processing power and energy resources.

4. Dynamic composition
While many sensors are cheap components, when they are deployed there might be two
potential issues. On one hand, similar sensors deployed in the same environment can be
seen as redundant. On the one hand, some of these sensors may fail during operation.
Furthermore, some sensors, such as sensors found on smart phones, can be introduced into
the environment when users enter a given area.
Therefore, the fourth requirement is the support for dynamic composition, which is the
ability to change the sensors used by an application at runtime. E.g. if the rooms light
sensors fail, it should be possible to detect the failure and use a light sensor of an entering
smart phone.

5. User usage and composition support
As mentioned earlier, the system developers do not fix the usage domain of the potential
applications. They concentrate on the development of software components that provide
specific functionalities. On the other hands, hardware developers provide compatible sen-
sors and actuators that can be reused in the designated system. Users will use visual tools
to compose different applications that will carry out the needed context-aware adaptation.
Therefore, as the fifth requirement, the architecture needs to also provide tools for users to
create desired context-aware applications.

One can foresee that such an architecture should consist of at least the following aspects. Dif-
ferent components such as sensors, actuators and context processing mechanisms can be found
in the system. These components are the basic units that will be used to build context-aware
applications. Service execution environments (SEEs) will act as supporting service platforms,
where the different components would be deployed and executed. The development of these

Proc. WowKiVS 2009 4 / 11



ECEASST

components will be carried out by professional developers, and tools should be design to assist
them to contribute new sensors, actuators and calculation components for the designated system.
Last but not least, we also need to provide users the means to understand and to manage the
behaviour of a context-aware service by selecting sensors, actuators and calculation components
and combining them.

2.2 Architecture

2.2.1 Three Tier Architecture

The architecture is based on the FAME2 middleware framework [WDD04]. This middleware
framework is implemented in Java and has a very small footprint. It runs on small devices like
PDAs and smart phones as well as on servers. FAME2 follows the service oriented architec-
ture principles and provides functionalities as independent components. This is exactly what is
needed to support automatic intelligent distribution, dynamic composition and high level context.

The architecture is a three-tier architecture. The basis is built on the FAME2 core, which has
three functionalities. The core manages the life cycle of the components, which are loading,
initiating, starting, stopping and updating components at runtime. The updating allows replacing
a component with another one which provides the same interface at runtime in a transparent
way. This is used to replace failed sensors with similar ones. Additionally the core enforces the
security policy to control the access to components. The core handles also the communication
between the components. Communication is implemented using the publish/subscribe pattern,
which is very well suited for a context-aware environment. In this way it is not necessary to poll
the sensors data continuously. Instead, the components within the SEE will be informed when
context changes take place.

The second tier provides a set of basic functionality, which is needed for the management and
control of the context-aware applications. In the playground we call them basic components.
These basic components consist of a repository, a discovery tool, a rule engine, and a manage-
ment interface. The repository contains all sensors, actuators and calculation components. De-
velopers can search the repository to reuse existing components instead of implementing needed
functionalities from scratch. The rule engine interprets rule languages like RuleML and thus can
execute user defined rules. These rules are processing plans, which describe the data flow and
data processing from sensors through calculation components to applications. In this way it is
possible to define context-aware applications without writing code, but by combining predefined
components [LKP+08].

On the top tier there are the components that build context-aware applications. In our approach
we view context-aware applications as logical entities that consist of different components. Each
component performs specific functionality. We define three types of components. Firstly, a
context-provider component provides sensor or context data. Secondly, there are also actuator
components that carried out a specific action. Last but not least, we also foresee the need of
context processing components, where output from the context provider components are pro-
cessed to produce inferred results. At the same time, if a composition of components produces
interpreted contexts, it can be also reused in the platform as a context provider component. The
communication between different components can be defined in program code or expressed in

5 / 11 Volume 17 (2009)



Implementation of a User-Centric Context-Aware Playground

logical rules. The latter will be interpreted via a rule engine in order to execute the context-aware
application.

2.2.2 Context Processing in a Context-Aware Environment

In order to calculate high level context, we allow the composition of reusable components, as
described in chapter 2.2. The composition can be seen as a directed acyclic graph, where the sen-
sors are the sources and the applications are the sinks. The nodes on the path from source/sensor
to sink/application are the calculation modules. Every component has a unified interface which
provides the functions to process new events, when the data of the input components has changed
and functions to publish the outcome of the calculation to the output components.

The processing of the graph is controlled by a central master device, which is responsible to
distribute the graph through the devices in a way that saves energy and uses available processing
power. To enable synchronised processing the graphs can be divided into processing rounds,
where in every round only nodes of the same level are processed [KLPD08]. Node levels in a
directed acyclic graph are defined as the length of the longest path of the node to a sink.

2.2.3 User’s Role in the Environment

While current home automation solutions offer mainly time and temperature controlled be-
haviour, the user is not in control of the behaviour let alone able to create new applications on
his own. Some solutions provide customization possibilities for users, but they are usually fixed
schedule-based approaches. In our architecture, we want to enable the user to create, manage and
control applications by manipulating the processing rules (see chapter 2.2) with a graphical tool.
In this way users can reuse the provided components and can express their application needs.
The applications are not executed based on a time table, but due to the changes of the contexts
in the environment.

The graphical tool assists the user to select components offered in a platform, such as sensors,
calculation components or actuators, from the repository and to ”draw” an application by con-
necting the components to define the data flow. This gives the user the control and understanding
to really be satisfied with the ”product” context aware room.

2.3 Rationale of a complete context-aware system package

Through our proposal of the architecture we wish to promote a complete context-aware package
development life cycle. In the near future we foresee the possibility to obtain both devices and
application components that can be deployed directly in a context-aware system in a plug-and-
play manner. Contrary to current products, where most of the intelligent systems are mostly
static and closed, we wish to include users’ involvement into the life cycle. The separation of
concern approach applied allows different parties involved in the life cycle to concentrate on
their own areas. The components in the platform can be reused for different purposes, as long
as the needed functions are the same. At the same time, faulty components can also be replaced
by similar components available at runtime, so that the execution of applications will not be
disrupted.

Proc. WowKiVS 2009 6 / 11



ECEASST

Besides that, such proposal can also be used in prototyping innovative products for future
scenarios. For developers and service providers the architecture enables flexible composition of
applications, which one can easily build in order to test and evaluate newer ideas. The compo-
nents offered in a system can be freely combined, and one can then execute the composed service
for his desired purpose. We believe such system will encourage a shorter prototyping process,
and useful products can be then delivered to potential users faster.

3 Proposed Implementation

To achieve the vision as proposed in chapter 2, we first will implement the playground in a
meeting room, to act as a proof of concept and as a playground to test new ideas for con-
text aware application. Therefore we will use sensors and actuators available on the market
and incorporate them into our platform. Together with the tools already developed in previous
projects [LKP+08] [s4a] [spi], we will provide a complete context-aware package including the
tools for developers and users to realise and test new ideas and applications.

The focus of this playground is to realise a complete environment instead of concentrating on
special aspects of the architecture or the calculation algorithms. Therefore we will use existing
solutions where ever possible to prove the feasibility of realising a context aware room with
cheap and easy available components and tools, which are well known from the research field of
service creation.

Once such a complete playground is realised, it will be straightforward used to implement
new features in the architecture and to test them in a real world scenario as well as to gather user
feedback. New applications and algorithms can also be added to the playground and tested with
real data obtained from the environment.

3.1 Context Providers Components

Context provider components are application components that provide high level context data to
an application. This can be a sensor data as well as an aggregation of sensor data, processed in
several steps. We use two different systems for the actual implementation, but the approach is
not limited to this systems. The first system is the ”Phidgets” system 2. ”Phidgets” offers a range
of sensors connected through USB to a computer. The sensors available include temperature
sensor, light sensor and accelerometer.

The second system currently in use is Sun SPOT (Sun Small Programmable Object Technol-
ogy) 3. It is a wireless sensor network (WSN) mote developed by Sun Microsystems. Each Sun
SPOT has various sensors such as a three-axis accelerometer, a temperature sensor and a light
sensor. Furthermore there are also five general purpose I/O pins for external input or output us-
age, e.g. control of a servo controller. The Sun SPOT can communicate with a receiver via the
IEEE 802.15.4 standard or it can also be connected through USB directly with a computer.

The states of different actuators in the system can also be used as another source of context.
This is useful in learning about actions executed and in informing both users and system what

2 http://www.phidgets.com/, last visited on 25th October 2008
3 http://www.sunspotworld.com/, last visited on 25th October 2008

7 / 11 Volume 17 (2009)



Implementation of a User-Centric Context-Aware Playground

the system has performed or is going to do. Further explanation on actuators will be presented
in the next subsection.

There should also be context provider components that filter and interpret aggregated sensor
data. For example, users’ situational context can be processed and observed to be classified into
high level contexts. Such context providers will implement suitable process algorithms in order
to deliver accurate interpretations. The interpreted high level contexts can be used by the users
to compose newer services that do not rely solely on sensor data.

3.2 Actuators Components

As actuators we use home automation components to control the light and the heater in the room.
Additionally we use every device in the room with network capabilities. E.g. at the room doors
are touch screen displays mounted to show information about the room context and a projector at
the room can be switched on or off. It is also possible to play audio files on a hi-fi system in the
room. Other actuators can control the aperture of the windows or the closing of the roller blinds.
In our playground we will build actuators on different devices found in our meeting room. It is
also foreseen that users can instruct the system to invoke the desired actuators based on different
context provider components.

3.3 Tools

As mentioned above, there are also different tools offered by the platform. We developed the
End-User Studio (EUS) to enable context-aware application creation using logic rules. Users
express their needs via ”if-then” relationships. We call this technique ”Draw an Application” -
the users basically draw applications that answer their needs. The drawn logic expressions are
graphical representations of high level abstraction of service behaviours. These abstractions do
not necessarily have direct relations to any of the components found in the SEE, since compo-
nents are described with high level abstraction descriptions. The users can search for available
components in the SEE and compose applications using these components. They can also start
composition free-hand - by drawing rule expressions with desired keywords without searching
for available components beforehand. Figure 1 is an example how a drawn rule may look like:

The EUS provides also the function of service deployment. After the user has created some
applications, he can either test the composed applications or store them in the platform. Since the
application wishes are expressed in logic rule policies, we have chosen RuleML [rul] as the rep-
resentation language for the composition of applications. In this manner, any EUS that produces
applications expressed in RuleML (with supported language versions) will ensure interoperabil-
ity.

The different components in the playground will be developed by professional developers. We
propose the use of a development tool plug-in for the well known IDE Eclipse to assist devel-
opers. Platform-specific requirements and routines can be assisted, simplified and automated
through the use of the plug-in. Wizard dialogues can also be used for components creation, de-
scription and deployment processes. All these features will minimize the effort required for the
component development on a given platform, where workload of developers in the development
process can be reduced, and hence allowing developers to focus on the component functionality

Proc. WowKiVS 2009 8 / 11



ECEASST

Figure 1: Example of a created application

instead.
We have also developed an agent called Business Rule Evaluator (BRE) to execute the appli-

cation. As proposed in our past projects, context-aware applications can be defined using simple
”if-else” logical rule expressions. As an example, a user can create a service that plays music on
respective devices according to his situational contexts. A rule engine can be used to process the
available contexts to decide whether which actuator component should be started. The BRE is
responsible to load the rule-based application expressions, and finds out which context provider
it should subscribe to. As soon as context changes take place, the BRE will be informed and the
rule inference process will be triggered. In cases where context conditions are satisfied, the BRE
will need to then invoke the respective actuator components.

4 Conclusion and Outlook

Based on our observation on existing research and our previous project results, we propose the
implementation of a practical context-aware system. The system consists of a complete context-
aware hardware and software package that supports both developers and users of the system. This
idea resulted in a user-centric context-aware playground, which we have partly implemented in
our smart meeting room project.

As next steps we wish to finalize the implementation of the various comsponents planned
for this playground. Different sensors have been integrated into the system. Actuator compo-
nents are also planned and will be developed. At the same time we will also add some context
processing components, such as context reasoning and prediction components.

Once the components are ready, we plan to perform evaluation on the context-aware applica-
tion creation. The expected result will help us to verify the ideas proposed in this paper. We
wish to also exploit this playground in improving the various algorithms used in context pro-
cessing components we currently have. The playground will be also our test bed for further
context-aware related research.

9 / 11 Volume 17 (2009)



Implementation of a User-Centric Context-Aware Playground

5 Acknowledgement

This work has been partially performed in the MATRIX project, which is partly funded by the
German ”Bundesministerium für Bildung und Forschung” (BMBF). The authors would like to
thank their project partners for their discussion.

Bibliography

[All] O. M. Alliance. OMA Enabler and Reference Releases. Available online at http:
//www.openmobilealliance.org/Technical/released enablers.aspx visited on August
25th 2008.

[DC06] S. K. Das, D. J. Cook. Designing and Modeling Smart Environments (Invited Pa-
per). In WOWMOM ’06: Proceedings of the 2006 International Symposium on on
World of Wireless, Mobile and Multimedia Networks. Pp. 490–494. IEEE Computer
Society, Washington, DC, USA, 2006.
doi:http://dx.doi.org/10.1109/WOWMOM.2006.35

[Dey01] A. K. Dey. Understanding and Using Context. Personal Ubiquitous Comput. 5(1):4–
7, 2001.
doi:http://dx.doi.org/10.1007/s007790170019

[DHB+04] A. K. Dey, R. Hamid, C. Beckmann, I. Li, D. Hsu. a CAPpella: Programming
by demonstration of context-aware applications. In in Proceedings of CHI 2004.
Pp. 33–40. 2004.

[HME+05] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen. The Gator Tech
Smart House: A Programmable Pervasive Space. Computer 38(3):50–60, 2005.
doi:http://dx.doi.org/10.1109/MC.2005.107

[KLPD08] B. N. Klein, S. L. Lau, A. Pirali, K. David. DAGR DAG based Context Reasoning:
An Architecture for Context Aware Applications. In Proceedings of the 8th Interna-
tional Workshop on Applications and Services in Wireless Networks (ASWN 2008).
Kassel, Germany, October 2008.

[KOA+99] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. D.
Mynatt, T. Starner, W. Newstetter. The Aware Home: A Living Laboratory for Ubiq-
uitous Computing Research. In CoBuild ’99: Proceedings of the Second Interna-
tional Workshop on Cooperative Buildings, Integrating Information, Organization,
and Architecture. Pp. 191–198. Springer-Verlag, London, UK, 1999.

[LKP+08] S. L. Lau, N. Klein, A. Pirali, I. Koenig, O. Droegehorn, K. David. Making Ser-
vice Creation for (Almost) Everyone. In ICT-Mobile Summit 2008. Stockholm, June
2008.

Proc. WowKiVS 2009 10 / 11

http://www.openmobilealliance.org/Technical/released_enablers.aspx
http://www.openmobilealliance.org/Technical/released_enablers.aspx
http://dx.doi.org/http://dx.doi.org/10.1109/WOWMOM.2006.35
http://dx.doi.org/http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/http://dx.doi.org/10.1109/MC.2005.107


ECEASST

[LKP+09] S. L. Lau, N. Klein, A. Pirali, I. Knig, K. David. Implementation of a User-Centric
Context-Aware Playground. In Workshops der Wissenschaftlichen Konferenz Kom-
munikation in Verteilten Systemen 2009 (WowKiVS 2009). Volume 17. Electronic
Communications of the EASST, 2009.

[rul] The Rule Markup Initiative. Available online at http://www.ruleml.org visited on
August 25th 2008.

[s4a] S4ALL-DE Project. Available online at http://www.s4all.eecs.uni-kassel.de visited
on October 25th 2008.

[SAW94] B. Schilit, N. Adams, R. Want. Context-Aware Computing Applications. In WMCSA
’94: Proceedings of the 1994 First Workshop on Mobile Computing Systems and
Applications. Pp. 85–90. IEEE Computer Society, Washington, DC, USA, 1994.
doi:http://dx.doi.org/10.1109/WMCSA.1994.16

[spi] IST-SPICE Project. Available online at http://www.ist-spice.org visited on October
25th 2008.

[WDD04] B. Wuest, O. Droegehorn, K. David. The Fame2 Platform Concept: Moving Plat-
forms to the Mobile. In Proc. 5th Int. Conference on Internet Computing (IC’04).
Pp. 423–430. LasVegas, USA, 2004.

[Wei99] M. Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Commun.
Rev. 3(3):3–11, 1999.
doi:http://doi.acm.org/10.1145/329124.329126

[ZBM04] T. Zhang, B. Brgge, T. U. Mnchen. Empowering the User to Build Smart Home
Applications. In Proceedings of 2nd International Conference on Smart homes and
health Telematic (ICOST2004), Singapore, 2004. Palviainen, Marko Series. Marko
Palviainen, 2004.

11 / 11 Volume 17 (2009)

http://www.ruleml.org
http://www.s4all.eecs.uni-kassel.de
http://dx.doi.org/http://dx.doi.org/10.1109/WMCSA.1994.16
http://www.ist-spice.org
http://dx.doi.org/http://doi.acm.org/10.1145/329124.329126

	Introduction
	Our Concept/Approach
	Scenario and Requirements
	Architecture
	Three Tier Architecture
	Context Processing in a Context-Aware Environment
	User's Role in the Environment

	Rationale of a complete context-aware system package

	Proposed Implementation
	Context Providers Components
	Actuators Components
	Tools

	Conclusion and Outlook
	Acknowledgement

