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Abstract: A new approach for topographic mapping, called Swarm-Organized 
Projection (SOP) is presented. SOP has been inspired by swarm intelligence methods 
for clustering and is similar to Curvilinear Component Analysis (CCA) and SOM. In 
contrast to the latter the choice of critical parameters is substituted by self-
organization. On several crucial benchmark data sets it is demonstrated that SOP 
outperforms many other projection methods. SOP produces coherent clusters even for 
complex entangled high dimensional cluster structures. For a nontrivial dataset on 
protein DNA sequence Multi Dimensional Scaling (MDS) and CCA fail to represent 
the clusters in the data, although the clusters are clearly defined. With SOP the correct 
clusters in the data could be easily detected. 
 
Keywords: Swarm Organization, Projection, Visualization, Clustering, Self Organized 
Feature Maps, ESOM 

1   Introduction 
In order to grasp cluster structures in high dimensional data, it is a common approach to 
project the data onto a low dimensional space such that it can be visualized [Izenman 08]. 
Ideally such a projection produces a map in the sense of a (geo-) graphical representation of an 
unknown landscape. Essential requirements for these projections are that cluster structures in 
the high dimensional space are not hidden nor clusters mixed, and that structures are not 
artificially added by the projection method. Cluster structures that are very clearly defined by a 
strong similarity between the cluster members and large dissimilarities between different 
clusters may be entangled in high dimensional space. To preserve all topological relations is, 
however, in principle impossible, if the dimension of the map space is strictly lower than the 
dimension the data’s space [Bauer et al 99].    

Linear projections, such as Principal or Indepenent Component Analysis (PCA/ICA), are in 
principle unable to preserve cluster structures on linear non-separable manifolds. Non-linear 
projection methods like Multi Dimensional Scaling (MDS) and Sammons mapping are also 
unable to unfold such clusters. Self Organizing Maps (SOM) [Kohonen 97] and Curvilinear 
Component Analysis (CCA) [Demartines/Hérault 97] are projection methods that have 
demonstrated to disentangle clusters and deliver coherent cluster representations. Both 
algorithms try to learn topographical correct mappings by the preservation of distance relations 
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within a certain neighborhood. This neighborhood is usually parameterized by a neighborhood 
radius. During the iterative construction of the mapping, i.e. unsupervised learning, this 
neighborhood radius is reduced. An improper choice of an annealing scheme for this radius, 
however, leads to a faulty representation of topology and cluster structures in CCA and SOM. 

In this paper we present a new approach for topographic mapping, called Swarm-Organized 
Projection (SOP). SOP has been inspired by swarm intelligence methods for clustering. SOP 
combines ideas from the Databot approach [Ultsch 00] with Schelling’s model of racial 
segregation in urban neighborhoods [Schelling 69]. In classical ant based clustering algorithms 
swarm agents pick up and drop data. See [Bonabeau 99 et al] for an overview. In contrast to 
this, Databots are identified with and characterized by a particular data point [Ultsch 00]. The 
biological equivalent would be an individual scent or pheromone. Databots are able to move 
on a two-dimensional discrete grid which is finite but unbound, i.e. toroid. The dynamics of a 
Databot swarm is controlled by programs for walking and the appreciation (sensing) of other 
Databots. Cluster formation in this model depends critically on a suitable annealing scheme for 
the range of sensors and/or the movement distances of Databots [Ultsch 00]. 

In  Schelling's segregation model [Schelling 69] there are two types of agents (inhabitants), 
blacks and whites, which reside on a two dimensional grid. Inhabitants have a more or less 
pronounced tolerance towards neighbors of the opposite color. An agent with an inacceptable 
number of opposite-color neighbours, is allowed to jump randomly to a free grid space. 
Shelling and others were able to demonstrate that even the smallest preferences in 
neighborhoods leads to a fixpoint, which is the complete demixing of the two populations 
(segregation) [Schelling 69], [Vinkovic/Kirman 06]. 

The problem of finding an annealing scheme that matches the data’s structures during the 
construction process of the projection is addressed in SOP by a Schelling like self adaptation 
and demixing of clusters until a sufficient level of topograhic ordering is reached. Therefore no 
crucial parameterization for the construction of SOPs is necessary. On critical benchmark data 
it is demonstrated that SOP significantly outperforms SOM and CCA. For a nontrivial dataset 
of Bioinformatics, it is shown that MDS and CCA fail to represent the clearly defined cluster 
structure. With SOP the correct classes in the data could be easily found. 

2   Swarm Organized Projection (SOP) 
A new algorithm for the projection of high-dimensional data onto two dimensional maps grids 
is defined. It is called Swarm-Organized Projection (SOP). As in the Databots model [Ultsch 
00], Swarm-Organized Projection agents are identified with input samples. Each agent resides 
on a large but finite two dimensional discrete map space grid O ⊂  N2 embedded on the surface 
of a torus [Ultsch 03]. Let D = {x1,..., xn} denote the dataset with ||.||D as distances between 
the data in D and ||.||0 

∈
denote the distances between position on the map space. The position of 

an agent representing data set x is called m(x). At each position i O an agent carrying a data 
point x can calculate its stress Φ(x, i): D x O -> R0
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The stress Φ(x, i) depends on a neighborhood function h  σ. This neighbourhood function h  σ: R 
-> [0, 1] is a symmetric and monotonic decreasing function of the map space distance from 
position i having it’s maximum value at distance zero, i.e. at position i. An example of such a 
neighbourhood function is a two dimensional Gaussian bell with variance σ2. The 
neighbourhood radius σ is adjusted (reduced, annealed) during the construction of a SOP 
mapping. An agent may move from a node i to a different node j, if by this move the stress at 
Φ(x, j) is decreased. Candidates for the target position j of a move are randomly drawn from 
the set of all positions such that the probability of the drawing follows a two dimensional iid 
normal distribution N2(i, s) centered at i with variance s2

1: function learning of m = SOP(D) 

. A SOP mapping m is constructed by 
the movement of the agents until convergence is reached at a certain radius σ, then the radius 
is reduced. The construction of a SOP mapping can be formulated in pseudo-code as follows: 

2:  for all x in D: assign an initial random position m(x) on the grid O 
3:   for σ = { smax , smax
4:       repeat 

-1,..., 1} do 

5:             for all x in D:  m(x) := arg minj Φ(x, j) with j drawn by N2

6:    until m fix 
(i, σ) 

7:    return m 
8:  end function SOP 
smax

First, the agents are randomly located on the grid (line 2). Then, for each radius σ a fixed point 
iteration with respect to mapping m is performed (lines 3 to 6). Agents move simultaneously, 
iff they can decrease their personal amount of topographic stress (line 5). At each level of a 
neighbourhood radius the learning proceeds until no agents wants to move (line 6). I.e. no 
agent is able to find a position, where its stress is lower than at the current position. 

 denotes the maximal distance between any two positions on the output grid O.  

The number of agents moving at a radius σ may vary, depending on the structure of the 
particular dataset. This adaptive mechanism discards the need for a pre-defined annealing 
scheme for σ. This means a self adaptation of the number of iterations for each value of σ.  
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Figure 1: neighbourhood radius as a function of iterations, SOP 

maps Chainlink  onto a 50 x 82  grid 

Figure 1 shows the number of iterations that SOP used for each σ on the Chainlink data (see 
below). Initially (0-a), when the mapping is random, many iterations are necessary to reach 
convergence. So neighborhood radius σ is kept constant. When a raw topographic mapping is 
achieved (a), convergence is reached much faster and the radius decreases fast (a-b). This 
depends on the scaling of the structural features of the data. When the global (cluster-specific) 
features are represented a fine grained optimization within the clusters takes place (c-d).  In 
this phase all the map space is covered by the SOP agents. As can be seen the distance 
structure of the data set itself determines the annealing of the radius σ. For SOP no prior 
knowledge of the structural features of the data is necessary to determine a suiting annealing 
scheme for the neighborhood radius σ. Note that SOP does not require the data as high 
dimensional points in a vector space. SOP’s input is only the distances ||.||D 

3   Benchmarking Swarm Organized Projections 

between the data 
in D. So SOP may also be used in cases where only distances are known. Below a real world 
situation of this type is presented, where only distances between genetic codes are given.  

SOP is tested here on a number of datasets that are published in order to assess the 
performance of clustering algorithms (http://www.uni-marburg.de/fb12/datenbionik). This 
repository, called Fundamental Clustering Problems Suite (FCPS) contains a set of benchmark 
problems that test the limits of clustering algorithms. All data sets from FCPS with a 
dimension greater than two are used. The datasets used are as depicted in figure 2. 
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Figure 2 The Benchmark data sets from FCPS (http://www.uni-marburg.de/fb12/datenbionik) 

The clusters in Atom and Chainlink are not separable by a linear manifold. In Atom one of the 
two clusters (core) is much more dense than the other (hull). The GolfBall data does not 
contain any identifiable clusters. All points sit on a sphere like the dimples on a golf ball. Tetra 
and Hepta have compact clusters which are linear separable from each other. In Tetra the 
clusters almost touch, i.e. the minimal inter cluster distance is small compared to the inner 
cluster distances. In Hepta one of the clusters is very dense. Iris data is used to show the effects 
of different principal axes in the clusters. The performance of SOP is tested in comparison to 
other projection algorithms form data spaces onto a two dimensional output. The tested 
projections are Principal Component Analysis (PCA), Independent Compontent Analysis 
(ICA), Multidimensional Scaling (MDS), emergent SOM (ESOM) and Curvilinear Component 
Analysis (CCA). We assume the reader to be familiar with PCA, ICA and MDS. For more 
information on these projections see, for example, [Duda et al 2003] or [Izenman 08]. 

The Self-Organizing Map (SOM) is a unsupervised learning artificial neural network 
[Kohonen 97]. SOMs use low-dimensional regular and finite grids as map space. Elements of 
map space (grid nodes) are called neurons or units. Each neuron i is associated with a so-called 
codebook vector wi

Di
Oi

wxxmxbmu −==
∈
minarg)()(

 in D. Input samples are projected onto the bestmatching unit (BMU), i.e.  
.SOM is very similar to k-means clustering, if the number 

of neurons is small [Ultsch 03]. Here, we use the SOM as a topographic projection. Therefore, 
we assume that the map space is sufficiently large, such that each input data can in principle be 
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mapped onto a separate neuron and there is some empty space between the BMUs, i.e. there 
exist neurons that are not BMUs of input samples. Using U-Matrix methods ([Ultsch 03]) on 
this type of SOM leads to the emergence of structural features in the data [Ultsch 07]. 
Therefore, this type of SOM is called Emergent SOM (ESOM) as opposed to k-means-SOM. 
Output map grids of size 50x80 = 4000 neurons on a toroid grid were used for the experiments 
reported here. 

Curvilinear Component Analysis (CCA) is loosely inspired by MDS and SOM 
[Demartines/Hérault 97].  A CCA is learned by performing for all data x, y a stochastic 
gradient descend on E(x,y): 

( )( ) ( )
ooD

ymxmhymxmyxyxE )()()()(),( 2 −⋅−−−= σ  

The user has to specify a suiting annealing scheme for σ . During construction of a CCA 
mapping the projected position of a datapoint m(x) is temporarily fixed, and all other m(y) 
move in order to adjust the pairwise distances. Convergence in CCA is enforced through a 
decreasing learning rate applied during the gradient descent [Demartines/Hérault 97]. 

A central claim for a mapping used for the visualization of high dimensional data is the 
preservation of cluster structures in the data. Therefore we use an assessment measure which 
measures cluster preservation. This measure is called Dispersion [Herrmann/Ultsch 10]. 
Dispersion quantifies the (dis-) connectedness of cluster-wise Delaunay graphs on the map 
space with respect to input distances. A cluster C ⊂ D is cohesively mapped onto map space iff 
the smallest subgraph of MD containing the pictures of the points in C is connected. A 
topographic mapping is called cohesive iff all cluster C1,...,Ck are cohesively mapped onto the 
map space. For all non cohesive mappings of a cluster, the dispersion of a cluster C is 
measured as the sum of the input distances added up along a minimal path in output space.  Let 
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(x,x’) be class-sensitive weight function defined as follows:  

 

The Dispersion disp(C) of class C is quantified using the minimum spanning tree (MST) on 
MD with edge weights wC →(x,x’). Let C ⊂  D x D denote the parental relation on MST with 
x → C → x' iff x is parental node to x' in MST. An ancestor relation C

* 

→
is then obtained by x 

C
* ∃ x' iff  n ∈N and there are x1, ..., xn → with x C x1 → C ... xn → C
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 x'. The Dispersion of 
cluster C is then defined as: 

 

Dispersion disp(D) of a mapping is the sum of cluster dispersions divided by the median of 
inter cluster distances mid: 

∑
=
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The normalization of disp by mid accounts for the data-dependent levels of scaling, different 
cardinalities and data manifold structures. Dispersion disp(D) adds path lengths, measured by  
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input space distances. Inner-cluster distances of a coherent projected cluster are not accounted 
for. A mapping which preserves the cluster structures (cohesive topographic mapping) gives a 
disp(D) value of zero. 

4   Results of the Benchmark 
Dispersion of the projection of the data sets are given in the following table. 
Dataset PCA ICA MDS Sammon CCA SOM SOP 
Atom              0.72 2.07 0.62 0.00 0.00 1.91 0.00 
Chainlink     92.44 25.08 51.60 58.76 72.38 0.00 0.00 
Tetra         48.35 30.69 36.16 0.00 0.00 0.00 0.00 
GolfBall   0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Hepta         0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Iris 0.00 7.16 0.00 0.00 0.00 1.14 0.00 

Table 1: Dispersion of the projections on the benchmark data 

CCA and SOM seem to have abilities to disentangle the data SOM is able to unfold Chainlink, 
makes, however small errors on Atom and Iris. To our experience the errors in SOM grow 
considerably, if bordered output grids (planar grids) are used. SOP is the only projection 
method that consistently projects all cluster structures in the data sets. 

5   SOP for Bioinformatics Data 
In this chapter SOP is applied to a dataset from Bioinformatics containing protein data with a 
well defined cluster structure. The data set, called GPD194, was published by Popescu et al. in 
[Popescu 06]. It contains 194 proteins, which belong to three distinct classes of proteins: 
myotubularins (MTM), receptor precursors (RET) and collagen alpha chains (COL). The data 
set is given as pairwise dissimilarities. These dissimilarities are calculated from the output of 
the BLAST algorithm [Altschul 97] as the similarity of the genetic code of the proteins. For 
details on this calculation see [Popescu 06].  The GPD194 data set offers quite a variety of 
dissimilarities between members of a protein class: the myotubularins (MTM), are very 
similar, the receptor precursors have many isoforms.  The collagen alpha chains (COL) are, 
however, quite diverse. A silhouette plot [Kaufman/Rousseeuw 90] of the GPD194 data is 
shown in Figure 3.  
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Figure 3: Silhouette plot for GPD194 data indicating three clearly separated cluster 

Positive silhouette values indicate a unique and distinctive membership of an input sample to 
its class. The collagens (COL) cluster contains a number of proteins with silhouette values of 
zero. This indicates almost equal distances of these proteins towards all clusters. As can be 
concluded from the silhouette plot in Figure 3, the protein clusters are well-separated and a 
cohesive topographic mapping should be possible.  

The GPD194 data set is non-vectorial: only distances are given. An embedding in Euclidean 
vector space produces considerable and nonvanishing errors.  Therefore, SOM, ICA and PCA 
could not be used on this data. So only MDS and CCA could be used for a comparison with 
SOP. 

MDS maps proteins onto a circle in map space. See Figure 4. Well-separated clusters in the 
input space are not indicated by MDS. For example, MTMs do not appear isolated from 
receptors and collagens, despite MTMs consists of a distinct set of proteins. Faithful 
representation of the cluster structure of GPD194 data is therefore not possible with MDS. 
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Figure 4: MDS projection of GPD194 Protein data set. 

 CCA depicts the proteins of GPD194 as a nearly uniform point cloud. Inter- and inner-cluster 
distances are not preserved, e.g. receptors and collagens do not appear as well-separated 
clusters with large inter-cluster distances and smaller inner-cluster distances. For illustration 
see Figure 5 Thus, cluster structures of GPD194 data can not be faithfully retrieved with CCA. 

 
Figure 5: CCA projection of GPD194 
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Figure 6 SOP projection of GPD194 protein distances 

Figure 6 shows that SOP correctly projects the three a priori classes of proteins. In contrast to 
MDS and CCA, SOP depicts each class of proteins as a well-separated heap. The protein 
classes are easily retrieved from map space. As it was expected from the Silhouette plot, the 
collagens (COL) are more scattered on the grid and show some outliers. 

6   Discussion 
Linearly non separable data sets, of which Chainlink, Atom, and GolfBall are canonical 
examples, demand of a projection to unfold the structures and project the clusters in a coherent 
way on the output map. The coherent representation of nontrivial entangled cluster is in 
principle impossible for projections like PCA, ICA, MDS and Sammons mapping. This paper 
demonstrates that only such projection methods that exclude more and more pairwise relations 
during their construction are able to visualize nontrivial cluster structures topologically correct 
and cluster preserving.  

Such projections belong to a class, called focussing projections. CCA, SOM and SOP belong 
to this class of projections. PCA, ICA and MDS are non-focussing projections. Focussing 
algorithms first capture global (inter-cluster) proximities, later more local (intra-cluster) data 
structures are represented. This is an effect of the shrinking neighborhood hσIt can be proven 
that the learning algorithm of SOP is sound, complete and terminating [Herrmann/Ultsch 10]

The right choice of an annealing scheme for the neighborhood radius σ  is crucial for focussing 
projections [Nybo et al 07]. An annealing which is not well suited to the intricacies of the 
data’s structures leads to topographical incorrect representation of clusters. The choice of the 
annealing scheme is, however, in practice left to some default strategy of a particular  
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implementation. An optimal annealing scheme depends both on the structure of the map space 
(e.g. bordered vs unbound, etc.) and the manifold containing the input samples. The latter is, 
however, an unknown quantity. In SOP the annealing adapts itself to the data’s structure by a 
fixed point iteration. This is not to be confused with fixed points in mathematics. With regard 
to probabilistic agents, fixed point refers to the state where no agent has moved. Let p ∈[0,1] 
denote the upper bound of the probability that an agent moves. The probability P(t) that for t 
∈  N iterations at least one agent moved follows as P(t) =  (1-(1-p)n)t 0)(lim →

∞>−
tP

t
. Since the 

iteration is likely to stop after a sufficient number of iterations. Therefore, SOP's learning 
algorithm terminates. Furthermore it can be proven that SOP's learning algorithm is sound and 
complete (see [Herrmann/Ultsch 10]. SOM’s leaning is neither sound nor complete. For CCA 
it can be shown that learning is complete and sound.  Yet, CCA fails to capture the non-linear 
manifold of the Chainlink benchmark data (see ).  

Dispersion is a raw measure in comparison with other topographic quality functions, e.g. 
Topographic Function [Bauer et al 99]. Dispersion does not account for the inner-class 
topography. However, the evaluation of inner-class topography preservation contributes error 
terms of its own which may easily blur more severe errors of non-cohesive  

The performance on the benchmark data demonstrates the superiority of the focussing 
algorithms over the non focussing algorithms. Among the first, SOP has the advantages of a 
self adaptation of the annealing scheme, a provable sound, complete and terminating leaning 
algorithm. On first nontrivial examples SOP has demonstrated superior performance with 
regard to the coherent representation of clusters. 

7   Summary 
A novel method to project high dimensional data onto two dimensional map spaces, called 
Swarm Organized Projection (SOP), is presented. SOP is derived from concepts of swarm 
intelligence and from emergent SOM (ESOM). It can be proven that the learning algorithm of 
SOP is sound, complete and terminating.  

In many similar algorithms like ESOM and CCA the choice of an annealing scheme for 
neigborhoods is crucial for a coherent representation of nontrivial high-dimensional cluster 
structures. SOP solves this problem trough self adaptation to the data’s structures using a 
swarm intelligence technique.  

On crucial benchmark data it is shown that SOP outperforms classical projections and other 
focussing projection methods. It is also demonstrated that SOP is able to represent clusters in a 
high-dimensional real world data set, where other projection methods fail. 
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