
Electronic Communications of the EASST

Volume 30 (2010)

International Colloquium on Graph and Model

Transformation On the occasion of the 65th birthday of

Hartmut Ehrig

(GraMoT 2010)

Stepping from Graph Transformation Units to Model Transformation

Units

Hans-Jörg Kreowski, Sabine Kuske, Caroline von Totth

24 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Stepping from Graph Transformation Units to Model

Transformation Units

Hans-Jörg Kreowski1, Sabine Kuske2, Caroline von Totth3∗

1 kreo@informatik.uni-bremen.de
2 kuske@informatik.uni-bremen.de
3 caro@informatik.uni-bremen.de

Department of Computer Science

University of Bremen, Germany

Abstract: Graph transformation units are rule-based entities that allow to transform

source graphs into target graphs via sets of graph transformation rules according

to a control condition. The graphs and rules are taken from an underlying graph

transformation approach. Graph transformation units specify model transforma-

tions whenever the transformed graphs represent models. This paper is based on

the observation that in general models are not always suitably represented as sin-

gle graphs, but they may be specified as the composition of a variety of different

formal structures such as sets, tuples, graphs, etc., which should be transformed

by compositions of different types of rules and operations instead of single graph

transformation rules. Consequently, in this paper, graph transformation units are

generalized to model transformation units that allow to transform such kind of com-

posed models in a rule-based and controlled way. Moreover, two compositions of

model transformation units are presented.

Keywords: graph transformation, model transformation, transformation units, mo-

del transformation units

1 Introduction

Computers are devices that can be used to solve all kinds of data-processing problems – at least in

principle. The problems to be solved come from economy, production, administration, science,

education, entertainment, and many other areas. There is quite a gap between the problems as

one has to face them in reality and the solutions one has to provide so that they run on a computer.

Therefore, computerization is concerned with bridging this gap by transforming a problem into

a solution. Many efforts in computer science contribute to this need for transformation. First of

all, compilers are devices that transform programs in a high-level language into programs in a

low-level language where the latter are nearer and more adapted to the computer than the former.

The possibility and success of compilers have fed the dream of transforming descriptions of

data-processing problems automatically or at least systematically into solutions that are given by

∗ The authors would like to acknowledge that their research is partially supported by the Collaborative Research

Centre 637 (Autonomous Cooperating Logistic Processes – A Paradigm Shift and Its Limitations) funded by the

German Research Foundation (DFG).

1 / 24 Volume 30 (2010)

mailto:kreo@informatik.uni-bremen.de
mailto:kuske@informatik.uni-bremen.de
mailto:caro@informatik.uni-bremen.de

Stepping from Graph Transformation Units to Model Transformation Units

smoothly running programs. In recent years, the term model transformation has become popular

for this idea.

In this paper, graph transformation units are generalized to model transformation units as rule-

based devices for modeling model transformations in a compositional framework. Our approach

has three sources of inspiration:

1. Following the ideas of model-driven architecture (MDA; cf., e.g., [Fra03]), the aim of

model transformation is to transform platform-independent models (PIMs), which allow to

describe problems adequately, into platform-specific models (PSMs), which run properly

and smoothly on a computer. As a typical description of the PIMs one may use UML

diagrams, while PSMs are often just programs in some common higher-level language

like Java or C++. A significant model transformation language within the framework of

MDA is the QVT standard of the OMG [OMG08].

2. One encounters quite an amazing number of model transformations in theoretical com-

puter science – in formal language theory as well as in automata theory in particular.

These areas provide a wealth of transformations between various types of grammars and

automata like, for example, the transformation of nondeterministic finite automata into de-

terministic ones, or of pushdown automata into context-free grammars (or the other way

round), or of arbitrary Chomsky grammars into the Pentonen normal form (to give a less

known example).

3. Graph transformation units (cf., e.g., [KKS97, KK99, KKR08]) are rule-based devices

to model binary relations between initial and terminal graphs. If the initial graphs are

interpreted as input models and the terminal graphs as output models, then such a unit

embodies a model transformation. The transformation of UML sequence diagrams into

UML collaboration diagrams in [CHK04] and the transformation of well-structured flow

diagrams into while-programs in [KHK06] are examples of this kind. This observation

supports the idea to use graph transformation units as building blocks for the modeling of

model transformations.

While the models in the MDA context are often diagrammatic or textual, the examples of the-

oretical computer science show that models may also be tuples with components being sets of

something. Accordingly, graphs as well as tuples, sequences, and sets of models are introduced

as models in Section 3, while Section 2 provides the necessary mathematical preliminaries. The

basic steps of model transformation are defined in Section 4 by actions that are applied compo-

nentwise to tuples of models and consist of rules in case of graph components and of data type

operations in all other cases. Based on models and actions, the notion of a model transformation

unit is introduced in Section 5, providing the descriptions of input, working and output models,

a set of actions, and a control condition to regulate the use of actions. The semantics of such

a unit is a transformation of input models into output models. In Section 6, the sequential and

parallel compositions of model transformation units are studied. In this way, complex model

transformations can be built up from simple ones in a modular way. While we discuss related

work in Section 7, the paper ends with some concluding remarks. As a running example, the

transformation of right-linear grammars into finite state automata is developed in several stages.

Proc. GraMoT 2010 2 / 24

ECEASST

2 Preliminaries

In this section, we recall the notion of a graph rule base providing a class of graphs, a class of

rules and a rule application operator. In the following sections graphs are used as basic visual

models and rules are used for their elementary transformations. Besides graphs, we use iden-

tifiers, truth values, and non-negative integers as smallest atomic models. Moreover, cartesian

products, free monoids, and powersets are recalled because these constructions will be used to

build up composite models in the next section.

2.1 Graph Rule Bases

A graph rule base B = (G ,R,=⇒) consists of a class of graphs G , a class of rules R, and a

rule application operator =⇒ with =⇒
r

⊆ G ×G for every r ∈ R. The rule application operator

is used in infix notation, i.e, (G,H) ∈ =⇒
r

is denoted by G=⇒
r

H . Subsections 2.2 through 2.4

present examples for the components of rule bases which are used throughout this paper.

2.2 Graph Classes

There are many different kinds of graph classes, two of which are explored here further: the class

of directed edge-labeled graphs and the class of finite state graphs, the latter being a subclass of

the former.

Directed edge-labeled graphs. The class of directed, edge-labeled graphs with individual,

possibly multiple edges is defined as follows. Let Σ be a set of labels. A graph over Σ is a

system G = (V,E,s, t, l) where V is a set of nodes, E is a set of edges, s, t : E →V are mappings

assigning a source s(e) and a target t(e) to every edge in E , and l : E → Σ is a mapping assigning

a label to every edge in E . An edge e with s(e) = t(e) is also called a loop. For a node v ∈V the

number of edges which have v as source is denoted by outdegree(v) and the number of edges that

point to v is the indegree of v. An edge e with label x is called an x-pointer if indegree(s(e)) = 0

and outdegree(s(e)) = 1. The components V , E , s, t, and l of G are also denoted by VG, EG, sG,

tG, and lG, respectively. The set of all graphs over Σ is denoted by GΣ.

For graphs G,H ∈ GΣ, a graph morphism g : G → H is a pair of mappings gV : VG →VH and

gE : EG → EH that are structure-preserving, i.e., gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)),
and lH(gE(e)) = lG(e) for all e ∈ EG.

If the mappings gV and gE are inclusions, then G is called a subgraph of H, denoted by G⊆ H.
For a graph morphism g : G → H , the image of G in H is called a match of G in H , i.e., the match

of G with respect to the morphism g is the subgraph g(G)⊆ H .

Finite state graphs. Two particular subclasses of GΣ are the classes of finite state graphs and

finite state graphs with word transitions respectively. More concretely, let I be some input alpha-

bet such that I∗⊎{start,final} ⊆ Σ
1. Then the graph in Figure 1 represents a finite state graph

with word transitions over I = {a,b,c}, where the edges labeled with w∈ I∗ represent transitions,

1 Given sets X and Y,X ⊎Y denotes the disjoint union of X and Y.

3 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

start finala

ccc

a

bb

ccc

Figure 1: A finite state graph with word transitions

start

final
a

bb

c

c

c

c

c

c

a

Figure 2: A finite state graph

and the sources and targets of the transitions represent states. The start state is indicated with

a start-pointer and every final state with a final-pointer. States are depicted as unfilled circles

whereas all other nodes are shown as small filled circles. Figure 2 shows a finite state graph

where each transition is labeled with a symbol from I.

2.3 Rules

To be able to transform graphs, rules are applied to the graphs yielding graphs again. One rule

class that can be used to transform graphs in GΣ is defined as follows. A rule r = (L ⊇ K ⊆ R)
consists of three graphs L,K,R ∈ GΣ such that K is a subgraph of L and R. The components L,

K, and R of r are called left-hand side, gluing graph, and right-hand side, respectively. A rule

may be depicted as L → R if K is clear from the context (the numbered nodes form the common

gluing graph).

An example of a rule is given in Figure 3. The left-hand side of this rule consists of two nodes

refine : 1 2
xyu

1 2

x yu

−→
x,y∈I
u∈I∗

Figure 3: The graph transformation rule refine

Proc. GraMoT 2010 4 / 24

ECEASST

1 and 2 and an edge from node 1 to node 2 that is labeled with a word xyu from some alphabet

I∗ where x and y are symbols of I. The gluing graph consists of the two nodes 1 and 2; the

right-hand side is obtained from the gluing graph by inserting a new node v and two new edges

e1 and e2 where e1 points from node 1 to v and is labeled with x, and e2 points from v to node 2

and is labeled with yu.

2.4 Rule Application

The application of a graph transformation rule to a graph G consists of replacing a match of the

left-hand side in G by the right-hand side in such a way that the match of the gluing graph is kept.

Hence, the application of r = (L ⊇ K ⊆ R) to a graph G = (V,E,s, t, l) consists of the following

three steps.

1. A match g(L) of L in G is chosen.

2. Now the nodes of gV (VL −VK) are removed, and the edges of gE(EL −EK) as well as the

edges incident to removed nodes are removed yielding the intermediate graph Z ⊆ G.

3. Afterwards the right-hand side R is added to Z by gluing Z with R in g(K) yielding the

graph H = Z⊎ (R−K) with VH =VZ ⊎ (VR −VK) and EH = EZ ⊎ (ER−EK). The edges of

Z keep their labels, sources, and targets so that Z ⊆ H. The edges of R keep their labels;

they also keep their sources and targets provided that those belong to VR −VK . Otherwise,

sH(e) = g(sR(e)) for e ∈ ER −EK with sR(e) ∈VK , and tH(e) = g(tR(e)) for e ∈ ER −EK

with tR(e) ∈VK .

The application of a rule r to a graph G is denoted by G=⇒
r

H , where H is the graph resulting

from the application of r to G. A rule application is called a direct derivation.

If the rule refine in Figure 3 is applied to a finite state graph, it splits a word transition labeled

with a word w of length at least two into two consecutive transitions, the first of which takes the

first symbol of w, while the second one gets labeled with the remainder of w. In particular, if

refine is applied as long as possible to the finite state graph in Figure 1, one gets the finite state

graph in Figure 2.

2.5 Further Basic Types

In addition to graph rule bases, we assume a set of identifiers ID, the set of truth values BOOL =
{TRUE,FALSE}, and the set of non-negative numbers N. All these sets are equipped with the

usual predicates and operations, i.e. the arithmetic operations like +,−, ·,≤,=, etc. for N, the

Boolean operations like ∧,∨,¬,→, etc. for BOOL, and the equality predicate = for ID.

All involved sets may be subject to the following three constructions that yield sets again:

1. the cartesian product X1 ×·· ·×Xk for sets X1, . . . ,Xk,k ∈ N;

2. the free monoid X∗ for a set X ;

3. the powerset set(X) for a set X that contains all subsets of X .

5 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

Furthermore we assume that the usual operations of these data types are available, like the

projections in the case of the product, concatenation and other string-processing operations in

the case of X∗ and the usual operations and predicates on sets like ∪,∩,∈,⊆, etc.

3 Models and Model Types

Many models used in computer science are of a graphical, diagrammatic, and visual nature, and

they can be represented as graphs in an adequate way in most cases. Moreover, further types

of elementary models such as numbers, truth values, or identifiers may be useful in addition to

graphs. And models may not occur only as singular items, but also as tuples or as some other

collections of models like sequences and sets. To cover this, we define models and their types in

a recursive way.

Definition 1 (models and their types) Models together with their types are recursively defined

as follows:

1. Let Y be a class of graphs G , ID, BOOL, or N. Then each y ∈ Y is a model of type Y .

2. If mi is a model of type Ti for i = 1, . . . ,k for some k ∈ N, then the k-tuple (m1, . . . ,mk) is

a model of type T1 ×·· ·×Tk.

3. If mi is a model of type T for i = 1, . . . ,k for some k ∈ N, then the sequence m1 · · ·mk is a

model of type T ∗.

4. If m is a set of models of type T , then m is a model of type set(T).

Note that in this way every model gets a type which is a set of models, but can serve as a name

on the syntactic level as well. To stress the semantic level we may write M(T) for T .

Point 1 makes sure that all graphs and – in this way – all diagrams with graph representations

are models. Besides graphs, truth values, numbers and identifiers become available as elementary

models. Point 2 allows one to consider a k−tuple of models as a model and makes k models

simultaneously available in this way. Point 3 and Point 4 also make many models of the same

type available at the same time. While Point 3 provides them as a sequence, Point 4 collects

them as a set.

The types of models as introduced above may be considered as free because they are based

on the free constructions product, free monoid, and power set. But in many cases, it may not be

reasonable to transform all models of a free type without any further restriction. For example, a

Chomsky grammar G = (N,T,P,S) is not just a quadruple of type set(ID)× set(ID)× set(ID∗×
ID∗)× ID, but N, T and P should be finite, N and T should be disjoint, S should be a nonterminal,

and a pair (u,v) ∈ P should consist of two strings of terminals and nonterminals rather than of

arbitrary identifiers. To make such restrictions possible, we introduce constrained types.

Proc. GraMoT 2010 6 / 24

ECEASST

Definition 2 (constrained model types) Let T be a model type.

1. Then X (T) is a class of constraints if each x ∈ X (T) specifies a set of models of type T ,

i.e. SEM(x)⊆M(T).

2. For x ∈ X (T), 〈T with x〉 is called a constrained model type. The models of this type are

the models of SEM(x), denoted by M(〈T with x〉).

The definition is used in a recursive way considering the free model types and the con-

strained model types both as model types. Consequently, one can build types of the form

〈〈T with x〉 with y〉 with iterated constraints.

3.1 Examples for Constraints

1. For the model type G , constraints x with SEM(x) ⊆ G are called graph class expressions

in the framework of graph transformation units and are extensively used there to specify

initial and terminal graphs. Examples of graph class expressions are the following.

(a) Single graphs Z ∈ G with SEM(Z) = {Z} are useful as start graphs of graph gram-

mars.

(b) For G = GΣ with Σ ⊆ ID, a subset X ⊆ Σ describes SEM(X) = GX and may serve as

terminal labels.

(c) For G =GΣ and X ⊆ Σ, the expression pointers(X) specifies all graphs in GΣ in which

all edges labeled with some x ∈ X are pointers (cf. Subsection 2.2).

(d) For G = GΣ and X ⊆ Σ, the expression one(X) specifies all graphs G in which for

each x ∈ X there occurs exactly one x-labeled edge, i.e., |{e ∈ EG | lG(e) = x}| = 1

for each x ∈ X .

2. Logical formulas are further typical examples for constraints. They may involve model

variables and the usual predicates and operations of the basic and free types:

(a) Boolean operations in case of BOOL like ¬,∧,∨,→;

(b) arithmetic operations and predicates on N like +, ·, mod, =, ≤;

(c) string operations and predicates on X∗ for some set X , like concatenation, transposi-

tion, equality;

(d) set operations and predicates like ∪, ∩, ⊎, =, ⊆, ∈.

Consider, for example, a model (x,y,X ,Y,m,n,u,v,G,H) of type ID × ID × set(ID)×
set(ID)×N×N× ID∗ × ID∗ ×GΣ ×GΣ. Then one may add the following constraints:

x = y, x ∈ X , y ∈ Y , X ∩Y = /0, m ≤ n, length(u) ≥ n, uv 6= vu, u = vtranspos(v), G ⊆ H ,

G ∈ GX , where length measures the length of a word u and returns an integer, and transpos

reverses the sequence of symbols in a word. Clearly, all the constraints may be combined

by Boolean operations.

7 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

3. Another frequently used constraint for graphs and sets is the requirement of finiteness

indicated by the constant model class expression finiteness. Instead of 〈GΣ with finiteness〉
we may write fin(GΣ), and finset(ID) instead of 〈set(ID) with finiteness〉.

3.2 Examples for Constrained Model Types

1. Finite state automata with word transitions can be defined as a constrained model type, i.e.

a finite state automaton fsa = (I,G) is a pair of type 〈set(ID)×GΣ with (∆ ⊆ Σ)∧ (G ∈
(∆∩pointers({start,final})∩one({start})))〉 where ∆ = I∗⊎{start,final}. The constraint

means that every state graph G is labelled over I∗⊎{start,final}, final- and start-edges are

pointers, and there is exactly one start-pointer. In the following, the constrained model

type of finite state automata with word transitions is denoted by FSA∗. The type of finite

state automata the transitions of which are labelled only with single symbols from I, can

be defined as the finite state automata in FSA∗, but where in the constraint I∗ is replaced

by I, i.e., ∆ = I ⊎{start,final}. The type of all finite state automata with single-symbol

transitions is denoted by FSA.

2. Chomsky grammars can be introduced in the framework above as models nearly in the

same way as they are defined in the literature.

A Chomsky grammar G = (N,T,P,S) is a quadruple of type set(ID)× set(ID)× set(ID∗×
ID∗)× ID with finite N, T and P, N ∩T = /0, S ∈ N, and (u,v) ∈ P implies u,v ∈ (N ∪T)∗

and u /∈ T ∗. G is right-linear if, in addition, (u,v) ∈ P implies u ∈ N and v ∈ (T+N)∪{ε}
where ε denotes the empty string.

More formally, the constraint of an arbitrary Chomsky grammar is with N,T,P∈ finset(ID)
∧N∩T = /0∧S ∈ N∧((u,v) ∈ P → (u,v ∈ (N∪T)∗∧u 6∈ T ∗)). And in case of right-linear

grammars one must add ((u,v) ∈ P → (u ∈ N ∧ v ∈ T+N ∪{ε})). The type of right-linear

grammars will be denoted by RLG. For explicit use below we mention here also the type

RLG×GΣ which will be used for transforming right-linear grammars into finite state au-

tomata.

4 Actions and Model Transformation Processes

In this section, the dynamic part of model transformations is introduced. The basic notion is that

of an action that describes an elementary step of model transformations. Then the iteration of

such steps provides more complex transformations.

It is worth noting that in this paper we do not explicitly consider infinite model transformations

because the purpose of model transformation units is to convert input models into output models

in finitely many steps. Infinite processes are considered in [HKK09].

Each model m can be identified with the 1-tuple (m) so that one may consider tuples of models

only without loss of generality. Given such a tuple (m1, . . . ,mk), an action is also a k-tuple

a = (a1, . . . ,ak) of component operations where, for i = 1, . . . ,k, ai specifies how mi is processed

by the action. If mi is a graph, then ai is a rule to be applied to mi. If mi is an identifier or truth

value, then ai may replace it by another identifier or the negated truth value respectively. If mi

Proc. GraMoT 2010 8 / 24

ECEASST

is a number, string or set, then ai may operate on it yielding a modified number, string or set

respectively. Moreover, we employ the void action ai =− meaning that mi remains unchanged.

If the component actions are performed, then a new tuple (m′
1, . . . ,m

′
k) of models is obtained.

This is made precise in the following definition.

Definition 3 (actions) Let T1 ×·· ·×Tk be a model type.

1. Then an action a = (a1, . . . ,ak) is a k-tuple such that one of the following holds for i =
1, . . . ,k:

(a) ai =−,

(b) ai ∈ R provided that Ti ⊆ G ,

(c) ai = rename provided that Ti ⊆ ID where rename is some mapping on Ti,

(d) ai is a term of operations with a distinguished variable of type N and which evaluates

to N provided that Ti = N.

(e) the same as (d) replacing N by BOOL, T ∗ and set(T) for some type T ,

(f) recursively, ai is an action provided that Ti is a product type with more than one

component.

2. Let m = (m1, . . . ,mk) ∈M(T1 ×·· ·×Tk). Then the action (a1, . . . ,ak) may be performed

on m yielding m′ = (m′
1, . . . ,m

′
k) ∈M(T1 ×·· ·×Tk) denoted by m=⇒

a
m′ if the following

holds for i = 1, . . . ,k:

(a) m′
i = mi if ai =−;

(b) mi=⇒
ai

m′
i if ai ∈ R;

(c) m′
i = ai(mi) if ai = rename or ai is a term as described in 1.(d) or (e).

(d) mi=⇒
ai

m′
i if ai is an action.

3. Let A be a set of actions. Then a model transformation process is a sequence of performed

actions m = m0=⇒
a1

m1=⇒
a2

· · ·=⇒
an

mn = m′ with the action sequence a1 · · ·an ∈ A∗. Such a

process may be denoted by m
n

=⇒
A

m′ or m
∗

=⇒
A

m′ if the omitted details do not matter. The

set of model transformation processes over A is denoted by MTP(A).

4.1 Examples for Actions

Let (N,T,P,S,G) be an arbitrary model of type RLG×GΣ as defined in point 2 of Subsection 3.2.

1. An action that removes a nonterminal symbol X from the first component of the right-

linear grammar (N,T,P,S) and then inserts a state labeled with X in the graph component

can be defined as (remove(X),−,−,−,node(X)), where remove(X) removes X from N (if

X ∈ N) and node(X) is the graph transformation rule depicted in Figure 4. If N does not

contain X the action cannot be executed.

9 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

node(X) : /0

X

−→

Figure 4: Graph transformation rule node(X)

edge(X ,u,Y) : 1 2

X Y

1 2

X Yu
−→

Figure 5: Graph transformation rule edge(X ,u,Y)

2. An action that removes a rule with a non-empty right-hand side from the right-linear gram-

mar while inserting a corresponding transition in the graph that contains a state for every

nonterminal of the rule can be defined as (−,−,remove((X ,uY)),−,edge(X ,u,Y)); the

graph transformation rule edge(X ,u,Y) is given in Figure 5.

Model transformation processes are nondeterministic in three respects. First, the rule applica-

tions in graph model components are nondeterministic as some rules may be applicable at several

matches. Second, although the operations of the basic types are functional, the evaluations of the

action terms of these types may not lead to unique values as the terms can contain free variables

with a variety of instantiations. Third, there may be a choice of many actions that can process a

current model, and the only regulating requirement for actions is that of sequential composition,

which is that one action is executed after the other. Sometimes such nondeterminism is desired,

convenient, or unavoidable. But in other cases one would like to avoid nondeterminism, or cut

it down at least. This can be achieved by choosing rules and actions in such a way that only

one or a few of them can be applied and performed. But the rules and actions may become quite

complicated. Another possibility is extra regulation which can be provided by control conditions.

Definition 4 (control conditions) Let A be a set of actions. Then C is a class of control condi-

tions if SEM(c)⊆ MTP(A) for every c ∈ C .

4.2 Examples for Control Conditions

In the area of graph transformation, control conditions are frequently expressions over rules.

Many of these kinds of control conditions can be generalized by replacing rules with actions.

1. A typical kind of control conditions are regular expressions over A. Each regular expres-

sion r specifies a regular language L(r). A model transformation process m
∗

=⇒
A

m′ belongs

to SEM(r) if and only if its action sequence belongs to L(r). In the following, the operators

concatenation, union, and Kleene star on languages will be denoted on the level of regular

expressions as a semicolon, a vertical bar and a star, respectively.

2. Another kind of control condition is a priority given by a partial reflexive and transitive

relation ≤ on A where a ≥ a′, but a′ 6≥ a means that a has higher priority than a′. A

Proc. GraMoT 2010 10 / 24

ECEASST

model transformation process belongs to SEM(≤) if and only if each performed action

mi−1=⇒
ai

mi has highest priority meaning that there is no mi−1=⇒
a

m with a ≥ ai but ai 6≥ a.

3. For any action a, the control condition a! requires to apply a as long as possible. Hence,

m
∗

=⇒
A

m′ is in SEM(a!) if the application sequence is in {a}∗ and there is no m′′ such that

m′=⇒
a

m′′. (Due to the fact that model transformation processes are finite, this means that

SEM(a!) = /0 if a can be applied infinitely often to any model m.) This condition can be

combined with regular expressions in a straightforward way. For example, the expression

a1!;a2! requires to apply first a1 as long as possible and then a2 as long as possible.

5 Model Transformation Units

The previous sections provide all the ingredients that are needed to introduce model transforma-

tion units as devices to specify model transformations. Such a unit consists of the type of models

to be transformed, of the actions to be performed, and of the control condition that regulates the

transformation process. Moreover, the types of input and output models are specified, including

their relation to the type of working models. The reasons to separate input, output and working

models is that input and output may have different types and that it may be convenient to use

further component models for intermediate processing.

In other words, an input model m of type 〈I1 ×·· ·× Ik with x〉 (i.e. a model of type I1×·· ·× Ik

that satisfies the constraint x) is first of all extended to a working model m of type T1×·· ·×Tl by

taking the components of m as components of m according to a mapping initial. This mapping

yields for each component of m the positions in m (i.e. the numbers out of 1, . . . , l) where the

component should be used. Clearly, each position in m may be associated in this way with with

at most one component of the input type. The components of the working model not covered

by initial are initialized by the initial models of the respective component types. Initial models

are chosen in some appropriate way, like 0 for Tj = N, etc. Then m is transformed into m′ by

performing the given actions such that the control condition is satisfied. Afterwards an output

model m′ of type 〈O1 × ·· ·×On with y〉 is constructed according to a mapping terminal. This

mapping selects for every position in m′ (i.e. for every number out of 1, . . . ,n) a component of

m′. Moreover, it must be assured that the obtained model m′ satisfies the constraint y.

Definition 5 (model transformation unit)

1. A model transformation unit is a system mtu = (ITD,OTD,WT,A,C) where

− WT is a product type T1 ×·· ·×Tl called working type,

− ITD is the input type declaration which consists of the constrained product type 〈I1×
·· ·× Ik with x〉 and a mapping initial : [k]→ set[l] such that initial(i)∩ initial(j) = /0

for i 6= j and Ii = Tj for i = 1, . . . ,k and j ∈ initial(i),

− OTD is the output type declaration which consists of a constrained product type

〈O1×·· ·×On with y〉 and an injective mapping terminal : [n]→ [l] with Oi = Tterminal(i)

for i = 1, . . . ,n,

11 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

− A is the set of actions with respect to the working type and

− C is the control condition.

The type I = 〈I1×·· ·× Ik with x〉 is called input type of mtu and the mapping initial initial-

ization. The type O = 〈O1 ×·· ·×On with y〉 is called output type of mtu and the mapping

terminal terminalization.

2. The model transformation modeled by the model transformation unit mtu is a mapping

SEM(mtu) : M(〈I1 ×·· ·× Ik with x〉)→ set(M(〈O1 ×·· ·×On with y〉)) which is defined

by m′ = (m′
1, . . . ,m

′
n)∈ SEM(mtu)(m1, . . . ,mk) for every m= (m1, . . . ,mk)∈M(〈I1×·· ·×

Ik with x〉) if and only if the following holds:

There are working models m = (m1, . . . ,ml), m′ = (m′
1, . . . ,m

′
l) ∈ M(T1 × ·· · × Tl) such

that

(a) m j =

{

mi for i = 1, . . . ,k and j ∈ initial(i)
init(Tj) for j 6∈ initial([k]) =

⋃

i∈[k]
initial(i) ,

(b) m
∗

=⇒
A

m′ ∈ SEM(C),

(c) m′
i = m′

j for i = 1, . . . ,n and terminal(i) = j,

(d) m′ ∈ SEM(y).

The initial model init(Tj) in (a) may be chosen in some appropriate way, like 0 for Tj =N,

the empty string ε for Tj = T ∗, the empty set /0 for Tj = set(T) or FALSE for Tj = BOOL.

In examples, initial will be represented in the form i 7→ j1, . . . , jp if initial(i) = { j1, . . . , jp}
and terminal in the form i 7→ j for terminal(i) = j.

Remark Given a model transformation unit mtu with input type I = 〈I1 ×·· ·× Ik with x〉 and

output type O = 〈O1 ×·· ·×On with y〉, mtu can be graphically represented by

mtu
I O

emphasizing that mtu specifies a transformation of input models into output models.

5.1 Examples for Model Transformation Units

A model transformation unit that transforms right-linear Chomsky grammars into finite state

automata is given in Figure 6. The components of this model transformation unit RLG2FSA∗ are

the following:

Proc. GraMoT 2010 12 / 24

ECEASST

RLG2FSA∗

input: RLG & 1 7→ 1,2 7→ 2,3 7→ 3,4 7→ 4

add: 5: GΣ & init(5) = /0 for Σ = (N ∪T)∗⊎{start,final}

actions: a1 = (remove(X),−,−,−,node(X)) for X ∈ N

a2 = (−,−,remove((X ,ε)),−,final(X)) for X ∈ N

a3 = (−,−,remove((X ,uY)),−,edge(X ,uY)) for X ,Y ∈ N,u ∈ T+

a4 = (−,−,−,−,start(S))
a5 = (−,−,−,−,remove loop(X)) for X ∈ N

cond: a1!;a2!;a3!;a4;a5!

output: FSA∗ & 1 7→ 2,2 7→ 5

Figure 6: The model transformation unit RLG2FSA∗ transforms right-linear Chomsky grammars

(RLG) into finite state automata with word transitions (FSA∗)

− A model of the working type is a quintuple where the first four components of the working

type correspond to the four types of a right-linear grammar; the last component is equal

to GΣ and serves to build up the finite state graph. It is initialized with the empty graph /0.

The alphabet Σ must equal (N ∪T)∗⊎{start,final} where N are the nonterminal symbols

and T the terminal symbols of the input grammar, and start and final will serve to label

the start and final states of the finite state graph respectively.

− The input type declaration is composed of the constrained model type for right-linear

grammars and the initialization initial : [4]→ set([5]) with initial(i) = {i} for i = 1, . . . ,4.

This means that the four components of the input type are the first four components of the

working type. Hence, the four components of every input model are used as the first four

components in the model the model transformation unit starts working with.

− The output type declaration consists of the constrained model type FSA∗ and the terminal-

ization terminal with terminal(1) = 2 and terminal(2) = 5. Hence, every output model of

the unit is the pair consisting of the second and the last component of the model the unit

ends working with, provided that the type of this pair equals FSA∗.

− The set of actions of RLG2FSA∗ consists of five kinds of actions, each of which contains

among other operations one of the graph transformation rules depicted in Figures 4, 5 and

7.

1. The first action a1 = (remove(X),−,−,−,node(X)) serves to generate a state in the

graph for each nonterminal of the input grammar. More concretely, every application

of this action generates a state with name X while removing the nonterminal X from

the set of nonterminals.

2. The second action a2 =(−,−,remove((X ,ε)),−,final(X)) inserts final pointers at all

final states of the graph, while removing the corresponding rules from the grammar.

13 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

start(S) :

S S start
−→

final(X) :

X X final
−→

remove− loop(X) :

X

−→

Figure 7: Graph transformation rules for the actions of model transformation unit RLG2FSA∗

3. The third action a3 = (−,−,remove((X ,uY)),−,edge(X ,u,Y)) serves to generate

transitions from those rules of the grammar that have a nonterminal in their right-

hand side. Every application of a3 removes such a rule from the rule set in the third

component at the same time that a corresponding transition in the graph is generated.

4. Action a4 = (−,−,−,, start(S)) inserts the start pointer at the state S if S is the start

symbol of the grammar.

5. Finally, the last action a5 = (−,−,−,−,remove loop(X)) for X ∈ N serves to re-

move all state names in order to obtain a finite state graph.

− The control condition a1!;a2!;a3!;a4;a5! requires that at first all states be generated. This

is achieved by applying a1 as long as possible. The application of a2 as long as possible

inserts for every rule with the empty word as right-hand side a final-pointer while removing

this rule. Then a3 requires to insert a transition for every remaining rule. Then the start

state is inserted by a4 and afterwards all state names are removed by applying a5 as long

as possible.

FSA∗2FSA

input: FSA∗ & 1 7→ 1,2 7→ 2

actions: a = (−,refine)

cond: a!

output: FSA & 1 7→ 2,2 7→ 2

Figure 8: The model transformation unit FSA∗2FSA transforms finite state automata with word

transitions (FSA∗) into finite state automata (FSA)

If the input model of RLG2FSA∗ is the right-linear grammar ({S,A},{a,b,c},P,S) with P =
{(S,aSa),(S,aA),(S,bbS),(A,cccA),(A,ε)}, the output model is ({a,b,c},G) where G is the

finite state graph with word transitions in Figure 1.

Proc. GraMoT 2010 14 / 24

ECEASST

Finite state graphs with word transitions can be transformed into finite state graphs with sym-

bol transitions by the model transformation unit FSA∗2FSA given in Figure 8.

The input type declaration consists of the constrained model type FSA∗ of finite state automata

with word transitions and the initialization initial that maps the two components of every input

model to the first two components of the working type. The working type of the unit is equal to

set(ID)×GΣ; the output type declaration consists of the model type FSA for finite state automata

and the terminalization terminal, which is the identity in this case. The only action a applies the

rule refine of Figure 3 to the graph component of the current model, while the control condition

requires to apply the action a as long as possible. If the input model of FSA∗2FSA is equal to the

state automaton ({a,b,c},G) where G is the finite state graph of Figure 1, the output is equal to

({a,b,c},G′) where G′ is the finite state graph in Figure 2.

6 Sequential and Parallel Composition

Model transformation units can be used as building blocks for more complex model transforma-

tion constructions obtained by sequential and parallel composition. This leads to the notion of

model transformation expressions on the syntactic level. Semantically, the sequential composi-

tion of model transformations is just the usual one of relations. And the parallel composition

uses the fact that all models are considered as tuples of some product types so that the product

of such types yields again models of some product type.

Definition 6 (compositional expressions)

1. The set CX of compositional expressions is defined recursively:

(a) model transformation units are in CX ,

(b) cx1, . . . ,cxk ∈ CX implies cx1; . . . ;cxk ∈ CX

(sequential composition),

(c) cx1, . . . ,cxk ∈ CX implies cx1 ‖ . . . ‖ cxk ∈ CX

(parallel composition).

2. The semantic relation of a compositional expression cx ∈ CX is defined according to its

syntactic structure:

(a) If cx = mtu for some model transformation unit, then SEM(cx) = SEM(mtu).

(b) If cx1; . . . ;cxk for some model transformation units cxi with i = 1, . . . ,k , then

SEM(cx1; . . . ;cxk) = SEM(cx1)◦ . . . ◦SEM(cxk)where

SEM(cxi)◦SEM(cxi+1)(m) =
⋃

m′∈SEM(cxi)

SEM(cxi+1)(m
′)

for each i ∈ {1, . . . ,k−1} and each m in the domain of SEM(cxi).

(c) (m′
1, . . . ,m

′
k)∈ SEM(cx1 ‖ . . . ‖ cxk)(m1, . . . ,mk) if and only if m′

i ∈ SEM(cxi)(mi) for

i = 1, . . . ,k.

15 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

6.1 Examples

The sequential composition RLG2FSA∗;FSA∗2FSA of the model transformation units in Section 5

transforms right-linear grammars into finite state automata so that the language generated by the

input grammar is recognized by the automaton.

The formal language theory offers many examples of sequential compositions of model trans-

formations like the transformation of right-linear grammars into finite state automata followed

by their transformation into deterministic automata followed by the transformation of the latter

into minimal automata.

A typical example of a parallel composition is given by the acception processes of two finite

state automata that run simultaneously. If they try to accept the same input strings, this parallel

composition simulates the product automaton that accepts the intersection of the two accepted

regular languages.

To make the definition of compositional expressions more transparent, one may assign an

input type and an output type to each compositional expression. Then the relational semantics of

an expression turns out to be a relation between input and output types.

Definition 7 (input and output types) The input type in and the output type out of a composi-

tional expression cx ∈ CX is recursively defined.

1. If cx = mtu for some model transformation unit with input type I and output type O, then

in(mtu) = I, out(mtu) = O,

2. If cx = cx1; . . . ;cxk for some model transformation units cxi with i = 1, . . . ,k, then

in(cx1; . . . ;cxk) = in(cx1) and out(cx1; . . . ;cxk) = out(cxk),

3. If cx = cx1 ‖ . . . ‖ cxk for some model transformation units cxi with i = 1, . . . ,k, then

in(cx1 ‖ . . . ‖ cxk) = in(cx1) ‖ . . . ‖ in(cxk) and out(cx1 ‖ . . . ‖ cxk) = out(cx1) ‖ . . . ‖
out(cxk), where the parallel composition of model types is defined as follows

(a) (T ‖ T ′) = (T ×T ′) provided that T and T ′ are free,

(b) T ‖ (〈T ′ with x′〉) = 〈(T ‖ T ′) with x′〉 provided that T is free,

(c) (〈T with x〉) ‖ T ′ = 〈(T ‖ T ′) with x〉 provided that T ′ is free, and

(d) (〈T with x〉) ‖ (〈T ′ with x′〉) = 〈T ‖ T ′ with x∧ x′〉,

Due to these definitions, it is easy to see that compositional expressions describe transforma-

tions from input models to output models.

Observation SEM(cx)(m) ∈ set(M(out(cx))) for all m ∈M(in(cx)).

The compositions can be quite intuitively depicted:

Proc. GraMoT 2010 16 / 24

ECEASST

tr1
I1 O1 tr2

I2 O2

tr1; tr2

I1 ‖ I2

tr1

I1

tr2

I2

O1

O2

O1 ‖ O2

tr1 ‖ tr2

The sequential and parallel compositions on the level of model transformation expressions

have the disadvantage that their results cannot be subject to further constraints. This is partic-

ularly problematic with respect to the parallel composition because the composed units run in

parallel, but without any interaction. This is quite all right provided that the components are

meant to run independently of each other. But in many cases of parallel composition one intends

that the components exchange information or process some data simultaneously. Such interre-

lations and interactions could be achieved by adding further constraints and control conditions.

This requires either to extend the notion of constraints and control conditions to the level of

model transformation expressions or to flatten such expressions into model transformation units.

The latter is done in the following.

6.2 Sequential Composition

Let mtui = (ITDi,OTDi,WT i,Ai,Ci) for i = 1,2 be two model transformation units with input

types Ii = 〈Ii,1 × ·· · × Ii,ki
with xi〉 and output types Oi = 〈Oi,1 × ·· · ×Oi,ni

with yi〉. By defi-

nition of the semantics of the sequential composition mtu1;mtu2, the following holds: m′′ =
(m′′

1, . . . ,m
′′
n2
) ∈ SEM(mtu1;mtu2)(m) for m = (m1, . . . ,mk1

) ∈ M(I1) if and only if there is an

m′ with m′ ∈ SEM(mtu1)(m) and m′′ ∈ SEM(mtu2)(m
′). This means in particular that m′ ∈

M(O1)∩M(I2) and therefore n1 = k2. To avoid too much technical trouble, we assume in addi-

tion that WT = WT1 = O1 ×·· ·×On1
= I1 ×·· ·× Ik2

= WT2. Then the sequential composition

of mtu1 and mtu2 can be simulated by the model transformation unit

mtu(mtu1;mtu2) = (ITD1,OTD2,WT,A1 ∪A2,C(C1,C2,y1,x2,A1,A2))

where the control condition is chosen in such a way that a model transformation process m
∗

=⇒
A1∪A2

m′′ is accepted if and only if it decomposes into m
∗

=⇒
A1

m′ ∗
=⇒

A2

m′′ with the following properties:

17 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

1. m
∗

=⇒
A1

m′ is accepted by C1,

2. m′ ∈ SEM(y1)∩SEM(x2),

3. m′ ∗
=⇒

A2

m′′ is accepted by C2.

Such a control condition may have the form of a transition system:

s0 s1 s2 s3

A∗
1,C1 −,y1 ∧ x1 A∗

2,C2

requiring that at the beginning the actions of A1 are iterated regarding C1, that the result must

obey y1 and x2 and that finally actions of A2 are iterated regarding C2.

It is not difficult to show that the following correctness result holds.

Observation SEM(mtu1;mtu2) = SEM(mtu(mtu1;mtu2)).

6.3 Parallel Composition

Let mtui = (ITDi,OTDi,WT i,Ai,Ci) for i = 1,2 be two model transformation units each with

input type Ii = 〈Ii,1 ×·· ·× Ii,ki
with xi〉 and initialization initiali : [ki]−→ set[li] as well as output

type Oi = 〈Oi,1 ×·· ·×Oi,ni
with yi〉 and terminalization terminal : [ni]−→ [li]. Then the parallel

composition of mtu1 and mtu2 can be simulated by the model transformation unit

mtu(mtu1 ‖ mtu2) = (ITD,OTD,WT1 ×WT2,A,C)

where

− ITD consists of the input type I1 ‖ I2 and the initialization initiali : [k1 + k2]−→ set[l1 + l2]
with initial(i) = initial1(i) for i ∈ [k1] and initial(i) = l1 + initial2(i − k1) for i = k1 +
1, . . . ,k1 + k2,

− OTD consists of the output type O1 ‖ O2 and the terminalization terminal : [n1 + n2] −→
[l1+ l2] with terminal(i) = terminal1(i) for i ∈ [n1] and terminal(i) = l1+ terminal2(i−n1)
for i = n1 +1, . . . ,n1 +n2,

− A = A1
′×A2

′ with A1
′ = A1 ∪{−}l1 and A2

′ = A2 ∪{−}l2 , and

− the control condition C is chosen in such a way that a model transformation process

(m1,m2)
∗

=⇒
A

(m1
′,m2

′) is accepted if and only if it decomposes into m1
∗

=⇒
A1

′
m1

′ and

m2
∗

=⇒
A2

′
m2

′ so that the former is accepted by C1 and the latter by C2 after removal of

the void steps given by the performance of the void actions (−, . . . ,−).

Proc. GraMoT 2010 18 / 24

ECEASST

The construction relies on the cartesian product of types and actions. Because the working type

components 1 to l2 become the components l1 +1 to l1 + l2, the initialization and terminalization

must be adapted accordingly. The actions of mtu1 and mtu2 are extended by the void action

(−, . . . ,−) with l1 and l2 components respectively. This is necessary because the actions of mtu1

and mtu2 may run in parallel, but the model transformation processes are of different lengths in

general so that they cannot run fully simultaneously.

It is again not difficult to show the following correctness result.

Observation SEM(mtu1 ‖ mtu2) = SEM(mtu(mtu1 ‖ mtu2)).

7 Related Work

In this section we briefly describe a selection of related work concerning model transformation.

Since there exists quite an amount of publications we restrict ourselves to papers that are con-

cerned with model transformations in the context of graph transformation. Moreover, we also

mention some work that is concerned with the composition of model transformation definitions.

Model transformations based on graph transformation. One approach to define model

transformations is by triple grammars [Sch94, KS06, SK08]. Each rule of a triple grammar

can be easily transformed into a forward rule, a source rule, and a backward rule. The source

rules are used to generate source models that – represented as graph triples – have the form

(S, /0, /0) where S represents the source model. The forward rules are used to produce target

models from source models. These target models – represented as graph triples – have the form

(S,C,T) where T is the target model. The backward rules are used to transform a target model

(/0, /0,T) to a source model (S,C,T). In [EEE+07], it is shown that any source consistent model

transformation based on triple grammars is backward information preserving. This means that

the target model (generated by the forward rules of the grammar) can be transformed into the

source model via the backward rules of the grammar. Roughly spoken, a model transformation

MT is source consistent if there is a transformation that generates the source model from (/0, /0, /0)
and that completely determines the matches in the source model of the forward rules applied in

MT.

In [EE08], models are graphs equipped with a semantics given as a set of simulation rules,

and a model transformation is composed of generating first an integrated model by graph trans-

formation rules and restricting it then to the target model. It is shown under which conditions

semantical correctness and completeness of model transformations are achieved. In [Küs06],

an approach to model transformation is presented that uses transformation units based on typed

attributed graph transformation. It provides criteria for syntactic correctness as well as for termi-

nation and confluence.

Examples of model transformation tools based on graph transformation are VIATRA2 [VB07],

GReAT [BNvBK06] and ATOM3 [dLVA04]. VIATRA2 integrates graph transformation and ab-

stract state machines. Basically, model transformation steps are captured by graph transforma-

tion rules whereas abstract state machines control the order of rule application. GReAT mainly

consists of a pattern specification language, a transformation rule language and a control flow

language. The graph transformation rules of GReAT include for example input and output in-

19 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

terfaces where the former can receive graph objects from previous rules and the latter can send

graph objects to another rule. ATOM3 focuses on modeling complex systems composed of var-

ious formalisms and allows to transform them into a single common formalism based on graph

transformation. In [dLT04], ATOM3 is combined with AGG for validation purposes.

In general, the mentioned publications on model transformation with graph transformation are

very close to our approach – they are however restricted to transform mainly graphs, not tuples

of graphs, sets or sequences as proposed in this paper.

Composition of model transformations. In the literature one can find two main types of

composition techniques for model transformation definitions: external and internal composition.

The first one chains model transformations sequentially whereas the second composes the rules

of a set of model transformation definitions into one transformation definition. In this sense the

compositions presented in Subsections 6.2 and 6.3 can be considered as internal compositions.

In [Wag08], the composition of model transformation definitions via superimposition is de-

scribed, which is a feature of the ATLAS Transformation Language [JK05]. Superimposition of

modules is an internal composition technique where models can be superimposed on top of each

other yielding a module that contains the union of all transformation rules. In [YCWD09], the au-

thors consider composition of model transformation definitions that transform high-level models

into low-level models by defining a correspondence model that specifies the relations between

the high-level meta models. The low-level correspondence model is automatically generated

so that the low-level models can be composed homogeneously. In this way, new concerns can

be added to existing model transformation definitions. In [CM08], two approaches for reusing

model transformation definitions are proposed. The first one is called factorization and it al-

lows to extract common parts of model transformation definitions obtaining in this way a base

transformation definition which can be reused. The second concerns composition of transfor-

mation definitions which have compatible source metamodels but different target metamodels.

Metamodels are related via small new metamodels and the transformations are integrated via

an integration transformation definition that locates and connects the join points (without know-

ing the rules but some kind of trace information) by using so-called refinement rules. One ap-

proach towards composition of model transformations based on graph transformation is studied

in [BHE09] where models are typed graphs that are mapped to semantic domains. The authors

define spatial compositionality of semantic mappings which roughly spoken means that the se-

mantics of a model is equal to the semantics that is obtained by embedding the semantics of

a piece of the model into some context. It is assumed that the semantic mappings are graph

transformation systems with a functional behavior and it is shown under which conditions they

behave compositionally. In [KKS07], a first approach towards structured model transformation

is proposed that allows package import, package merge and generalization according to a stan-

dardized packaging concept of the UML. In particular, the authors extend triple graph grammars

by the mentioned concepts.

8 Conclusion

In this paper, we have introduced the notion of model transformation units as a generalization

of graph transformation units. Models are tuples of graphs and other data structures like strings,

Proc. GraMoT 2010 20 / 24

ECEASST

sets, numbers, etc. Models of this kind cover graphical models like UML diagrams as well as

set-theoretic models like grammars and automata. They are transformed componentwise by rule

applications in the cases of graphs and by applications of data type operations in the other cases.

Besides a set of such actions, a model transformation unit provides descriptions of input, output,

and working models as well as a control condition to regulate the use of actions. Semantically,

a transformation of input models into output models is specified. Moreover, we have studied

sequential and parallel compositions of model transformation units as means to build up complex

transformations from simple ones.

Although the considerations in this paper seem to be promising, more work is needed to un-

derpin the significance of this novel approach, including the following points.

1. As pointed out in Section 4, the introduced kind of model transformation is nondeter-

ministic. Therefore, sufficient conditions are often of interest that guarantee termination,

completeness and functionality where the first property means that there is no infinite run,

the second one requires at least one output for each input, and the latter one requires at

most one output for each input.

2. Concerning our running example, it is known from the literature that a right-linear gram-

mar generates the same language as is recognized by the finite state automaton resulting

from the transformation. One intention of our approach is to support such correctness

proofs. Therefore, notions of correctness and an appropriate proof theory must be studied

in the future.

3. An interesting question in this respect is whether and how these correctness notions are

compatible with the sequential and parallel compositions so that the correctness of the

components yields the correctness of the composed model transformation.

4. Further explicit and detailed examples are needed to illustrate all introduced concepts more

convincingly, in particular examples for parallel and sequential composition with interac-

tion between components.

Acknowledgments We are grateful to the unknown referees for various helpful comments.

The first author wants to thank Hartmut Ehrig for the long lasting cooperation and friendship.

Hans-Jörg (being a Math student at the time) met Hartmut in 1970 when a very close relation-

ship started. Hartmut supervised Hans-Jörg’s diploma thesis in 1974 and his PhD thesis in 1978.

Moreover, he guided Hans-Jörg to habilitation in 1981. Hartmut introduced Hans-Jörg to cate-

gory theory. They both learned automata theory together. Hartmut convinced Hans-Jörg of the

significance of graph transformation. They both together got involved in algebraic specification.

Although this happened in the 1970s, it sticks: Elements of all four areas can be found in the

present paper. Hans-Jörg happily acknowledges that he is one of Hartmut’s grateful students.

Bibliography

[BHE09] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositionality of model trans-

formations. Electr. Notes Theor. Comput. Sci., 236:5–19, 2009.

21 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

[BNvBK06] Daniel Balasubramanian, Anantha Narayanan, Christopher P. van Buskirk, and Ga-

bor Karsai. The graph rewriting and transformation language: GReAT. ECEASST, 1,

2006.

[CHK04] Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski. UML interaction dia-

grams: Correct translation of sequence diagrams into collaboration diagrams. In John

l. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, Applications of Graph Transfor-

mations with Industrial Relevance (AGTIVE 2003), volume 3062 of Lecture Notes in

Computer Science, pages 275–291, 2004.

[CM08] Jesús Sánchez Cuadrado and Jesús Garcı́a Molina. Approaches for model transfor-

mation reuse: Factorization and composition. In Vallecillo et al. [VGP08], pages

168–182.

[dLT04] Juan de Lara and Gabriele Taentzer. Automated model transformation and its val-

idation using AToM3 and AGG. In Alan F. Blackwell, Kim Marriott, and Atsushi

Shimojima, editors, Diagrammatic Representation and Inference, volume 2980 of

Lecture Notes in Computer Science, pages 182–198. Springer, 2004.

[dLVA04] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph

grammars for multi-paradigm modelling in AToM3. Software and System Modeling,

3(3):194–209, 2004.

[EE08] Hartmut Ehrig and Claudia Ermel. Semantical correctness and completeness of model

transformations using graph and rule transformation. In Ehrig et al. [EHRT08], pages

194–210.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele

Taentzer. Information preserving bidirectional model transformations. In Matthew B.

Dwyer and Antónia Lopes, editors, FASE, volume 4422 of Lecture Notes in Computer

Science, pages 72–86. Springer, 2007.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors.

Graph Transformations, 4th International Conference, ICGT 2008, Leicester, United

Kingdom, September 7-13, 2008. Proceedings, volume 5214 of Lecture Notes in

Computer Science. Springer, 2008.

[Fra03] David S. Frankel. Model Driven Architecture. Applying MDA to Enterprise Comput-

ing. Wiley, Indianapolis, Indiana, 2003.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous units to

model interacting sequential and parallel processes. Fundamenta Informaticae,

92(3):233–257, 2009.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel

Bruel, editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of Lec-

ture Notes in Computer Science, pages 128–138. Springer, 2005.

Proc. GraMoT 2010 22 / 24

ECEASST

[KHK06] Hans-Jörg Kreowski, Karsten Hölscher, and Peter Knirsch. Semantics of visual mod-

els in a rule-based setting. In R. Heckel, editor, Proceedings of the School of SegraVis

Research Training Network on Foundations of Visual Modelling Techniques (FoVMT

2004), volume 148 of Electronic Notes in Theoretical Computer Science, pages 75–

88. Elsevier Science, 2006.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with interleaving

semantics. Formal Aspects of Computing, 11(6):690–723, 1999.

[KKR08] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph transformation

units – an overview. In P. Degano, R. De Nicola, and J. Meseguer, editors, Con-

currency, Graphs and Models, volume 5065 of Lecture Notes in Computer Science,

pages 57–75. Springer, 2008.

[KKS97] Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested graph transformation

units. International Journal on Software Engineering and Knowledge Engineering,

7(4):479–502, 1997.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model transformation in the large.

In Ivica Crnkovic and Antonia Bertolino, editors, ESEC/SIGSOFT FSE, pages 285–

294. ACM, 2007.

[KS06] Alexander Königs and Andy Schürr. Tool integration with triple graph grammars - a

survey. Electr. Notes Theor. Comput. Sci., 148(1):113–150, 2006.

[Küs06] Jochen Malte Küster. Definition and validation of model transformations. Software

and System Modeling, 5(3):233–259, 2006.

[OMG08] OMG. Meta object facility (MOF) 2.0 query/view/transformation (QVT).

http://www.omg.org/spec/QVT/, 2008.

[Sch94] Andy Schürr. Specification of graph translators with triple graph grammars. In

Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic

Concepts in Computer Science, volume 903 of Lecture Notes in Computer Science,

pages 151–163. Springer, 1994.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Ehrig et al.

[EHRT08], pages 411–425.

[VB07] Dániel Varró and András Balogh. The model transformation language of the VIA-

TRA2 framework. Science of Computer Programming, 68(3):187–207, 2007.

[VGP08] Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors. Theory and Prac-

tice of Model Transformations, First International Conference, ICMT 2008, Zürich,

Switzerland, July 1-2, 2008, Proceedings, volume 5063 of Lecture Notes in Computer

Science. Springer, 2008.

[Wag08] Dennis Wagelaar. Composition techniques for rule-based model transformation lan-

guages. In Vallecillo et al. [VGP08], pages 152–167.

23 / 24 Volume 30 (2010)

Stepping from Graph Transformation Units to Model Transformation Units

[YCWD09] Andrés Yie, Rubby Casallas, Dennis Wagelaar, and Dirk Deridder. An approach for

evolving transformation chains. In Andy Schürr and Bran Selic, editors, MoDELS,

volume 5795 of Lecture Notes in Computer Science, pages 551–555. Springer, 2009.

Proc. GraMoT 2010 24 / 24

	Introduction
	Preliminaries
	Graph Rule Bases
	Graph Classes
	Rules
	Rule Application
	Further Basic Types

	 Models and Model Types
	Examples for Constraints
	Examples for Constrained Model Types

	Actions and Model Transformation Processes
	Examples for Actions
	Examples for Control Conditions

	Model Transformation Units
	Examples for Model Transformation Units

	Sequential and Parallel Composition
	Examples
	Sequential Composition
	Parallel Composition

	Related Work
	Conclusion

