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Universitat Politècnica de Catalunya, Barcelona, Spain.

2 Leen.Lambers@hpi.uni-potsdam.de
Hasso Plattner Institut

Universität Potsdam, Germany

Abstract: In this paper we present a new approach to deal with attributed graphs
and attributed graph transformation. This approach is based on working with what
we call symbolic graphs, which are graphs labelled with variables together with a
formula that constrains the possible values that we may assign to these variables.
In particular, in this paper we will compare in detail this new approach with the
standard approach to attributed graph transformation.
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1 Introduction

The study of graph grammars and graph transformation started 40 years ago. However, the first
formal approach to deal with attributed graphs is much more recent [12], even if this kind of
graphs are needed in many applications of the field. Actually, the development of the fundamen-
tal theory of graph transformation for the case of attributed graphs is quite recent [7]. The reason
for this late development is probably that, even if the attributed case may seem to be a straight-
forward generalization of the standard case, it presents some difficulties which have hampered
the development of this fundamental theory. One of these difficulties lies on the complication of
putting together two theoretical frameworks, algebraic specification and graph transformation,
even if both are algebraic and categorical frameworks. In fact, to avoid this problem, at least to
some extent, in [12] graphs are coded as algebras with the aim of having a uniformsetting. The
problem is that, in general, algebra transformation does not enjoy the right properties to ensure
that the basic theory of graph transformation will hold.

The approach studied in [12], based on the approach presented in [10] is, in a sense, the
opposite. In this case, the data algebra is embedded in the graph. More, precisely, an attributed
graph is seen as a pair formed by an algebra, to define the values of the attributes of the graph,
and a graph that includes all the values of the algebra as (a special kind of) nodes. This approach
still has some difficulties caused by the fact that, even if the graphs of interest are defined over
the same data algebra, we have to consider categories including graphs over different algebras.
The reason is that, most often, the algebras in the graphs occurring in the transformation rules are
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Symbolic Attributed Graphs

different from the algebras in the graphs to which we apply these rules. In [7] the algebra used
in rules is the freely generated term algebra over a given setof variables, i.e. attributes are terms
with variables. However, one could use different algebras for defining transformation rules. In
particular, for the formalization of attribute conditions, the term algebra over a set of variables
is not sufficient. In this sense, in this paper we introduce a specific way to do this by taking the
initial algebra associated to a given specification.

In [19], Plump and Steinert present an approach that avoids the complexity of having to deal,
in a single concept, with graphs and algebras. This approachis essentially based on two ideas.
On the one hand, attributed graphs are seen as labelled graphs, where the labels are defined as
elements of an algebra. On the other hand, graph transformations involving computations on the
labels are defined by ruleschemas, which are similar to graph transformation rules, but defined
in terms of graphs labelled by terms with variables. Then, toapply a rule schema to a given
graph we must first instantiate the schema assigning data values to the variables in the schema.
The result of the instantiation is a rule where the terms labeling the graphs have been replaced by
the values of these terms. In our opinion, the approach has two main drawbacks. The first one is
the fact that rule schemas are not first class citizens, in thesense that they need to be instantiated
to define the rules. This causes that one may need to explicitly reformulate in terms of that
framework most constructions and results associated to graph transformation. This would be the
case, for instance, if we would want to define in that framework notions like graph constraints,
typing or borrowed contexts. On the other hand, in that approach, a limitation is imposed on the
number of labels that each node or edge can have. In particular, in that paper, at most one label
is allowed, though it would not be difficult to fix a different limitation.

The main aim of this paper is to present a new approach to deal with attributed graph transfor-
mation, which we believe is conceptually simple but more powerful than previous approaches, as
we show. The approach is partially inspired on how the clausal part and the data part are concep-
tually separated in Constraint Logic Programming [11, 14]. In particular, attributed graphs are
presented assymbolic graphsconsisting of a graph that includes as nodes some variables which
represent the values of the attributes, together with a set of formulas that constrain the possible
values of these variables. This means that the underlying algebra of values remains only implicit
to define the satisfaction of these formulas. The idea underlying this approach was first intro-
duced in [16, 17] to study graph constraints over attributed graphs and, then, used again with a
similar aim to specify model transformations by means of patterns [8].

Symbolic graphs can be seen as specifications of attributed graphs. Actually, to compare the
standard approach to attributed graph transformation, we define a semantics of symbolic graphs
in terms of classes of attributed graphs and we show how attributed graphs can be identified
with some specific kind of symbolic graphs, which we call grounded symbolic graphs. Then,
to compare the expressive power of the two approaches with respect to attributed graph trans-
formation, we first show that symbolic graphs, as it happens with attributed graphs [10], form
an adhesive HLR category [13, 4] to ensure that symbolic graphs inherit the fundamental theory
of graph transformation. A variant of this proof is already included in [17]. Finally, we show
that attributed graph transformation systems can be coded into symbolic graph transformation
systems but that the converse is not true in general.

The paper is organized as follows. In Section 2 we provide a reminder of some notions that
are used in the rest of the paper. In particular, first, we briefly enumerate some notions from
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algebraic specification; then, we present E-graphs which are used as the graph part for both
attributed graphs and symbolic graphs; finally, we define thecategory of attributed graphs as
presented in [4]. In Section 3 we present the category of symbolic graphs, showing that it is
adhesive HLR. Section 4 is dedicated to relate the categories of attributed and symbolic graphs
and Section 5 to compare the expressive power of both approaches with respect to attributed
graph transformation. In Section 6, we draw some conclusions. Finally, in an appendix some
technical details and proofs are provided.

2 Preliminaries

We assume that the reader has a basic knowledge on algebraic specification and on graph trans-
formation. For instance, we advise to look at [6] for more detail on algebraic specification or at
[20, 4] for more detail on graph transformation.

2.1 Basic algebraic concepts and notation

As usual, a signatureΣ = (S,Ω) consists of a set of sortsS, and a family of operation symbols of
the formop : s1×·· ·×sn→ s, denoted byΩ, wheren≥ 0 ands1, . . . ,sn,s∈ S. However, in this
paper, signatures include also predicates. We can deal withthis extended case in two ways. The
first one is to consider thatΣ consists, in addition, of a family of predicate symbols. Thesecond
one, which we will use, because it is simpler, is based in considering that there is a special sort in
S, which we could calllogical, and that predicate symbols are just operation symbols withprofile
s1×·· ·×sn→ logical. In this case, logical connectives can be treated as operation symbols over
the logical sort. In addition, the truth valuest andf may be seen as constants in the signature of
sort logical.

A Σ-algebraA consists of anS-indexed family of sets{As}s∈S and a functionopA : As1×·· ·×
Asn→As for each operationop: s1×·· ·×sn→ s in the signature. AΣ-homomorphismh : A→A′

consists of anS-indexed family of functions{hs : As→ A′s}s∈S commuting with the operations.
Σ-algebras andΣ-homomorphisms form the categoryAlgΣ.

A congruence≡ on an algebraA is an S-indexed family of equivalence relations{≡s}s∈S

which are compatible with the operations. In this case,A/≡ denotes the quotient algebra whose
elements are equivalence classes of values inA. BetweenA andA/≡ there is a canonical homo-
morphism mapping every element inA into its equivalent class.

Given signaturesΣ,Σ′, with Σ′ ⊆ Σ, everyΣ-algebra can be seen as aΣ′-algebra, byforgetting
all the sorts and operations which are not inΣ′. In particular this is called theΣ′-reduct of a
Σ-algebraA and is denoted byA|Σ′ .

Given a signatureΣ, we denote byTΣ the term algebra, consisting of all the possibleΣ-(ground)
terms. TΣ is initial in AlgΣ, and the unique homomorphismhA : TΣ → A yields the value of
each term inA. Similarly, TΣ(X) denotes the algebra of allΣ-terms with variables inX, and
given a variable assignmentσ : X → A, this assignment extends to a unique homomorphism
σ# : TΣ(X)→ A yielding the value of each term after the replacement of eachvariablex by its
valueσ(x). In particular, when an assignment is defined over the term algebra, i.e.σ : X→ TΣ,
thenσ#(t) denotes the term obtained by substituting each variablex in t by the termσ(x).
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A Σ-algebraA is finitely generated if every element inA is the value of some ground term. It
is not difficult to see that ifA is finitely generated there is at most one homomorphism between
A and any otherΣ-algebraA′.

A specificationSP= (Σ,Ax) consists of a signatureΣ and a set of axiomsAx, which may
be seen as terms of logical sort. Equational specifications are a special case, where the only
predicate symbol is the equality. Similarly, conditional equations may be considered as a special
kind of terms. GivenSP, AlgSP denotes the full subcategory ofAlgΣ, consisting of allΣ-algebras
A satisfying the axioms in the specification, i.e.A |= Ax. In the case whereSP consists of
equations or conditional equations there is an initial algebra inAlgSP, denoted byTSP.

2.2 E-graphs

E-graphs are introduced in [4] as a first step to define attributed graphs. Intuitively, an E-graph
is a kind of labelled graph, where both nodes and edges may be decorated with labels from a
given setE. The difference with labelled graphs, as commonly understood, is that in labelled
graphs it is usually assumed that each node or edge is labelled with a given number of labels,
which is fixed a priori. In the case of E-graphs, each node or edge may have any arbitrary (finite)
number of labels, which is not fixed a priori. Actually, in thecontext of graph transformation,
the application of a rule may change the number of labels of a node or of an edge.

Formally, in E-graphs labels are considered as a special class of nodes and the labeling relation
between a node or an edge and a given label is represented by a special kind of edge. Notice that,
for instance, this means that the labeling of an edge is represented by an edge whose source is an
edge and whose target is a node (a label).

Definition 1 (E-Graphs and morphisms) AnE-graphover the set of labelsL is a tupleG =
(VG,L,EG,ENL,EEL,{sj , t j} j∈{G,NL,EL}) consisting of:

• VG andL, which are the sets ofgraph nodesand oflabel nodes, respectively.

• EG, ENL, andEEL, which are the sets ofgraph edges, node label edges, andedge label
edges, respectively.

and the source and target functions:

• sG : EG→VG andtG : EG→VG

• sNL : ENL→VG andtNL : ENL→ L

• sEL : EEL→ EG andtEL : EEL→ L

Given the E-graphsG andG′, anE-graph morphism f: G→G ′ is a tuple,〈 fVG : VG→V ′G, fL :
L→ L′, fEG : EG→ E′G, fENL : ENL→ E′NL, fEEL : EEL→ E′EL〉 such thatf commutes with all the
source and target functions.

E-graphs and E-graph morphisms form the categoryE−Graphs.

The following construction, which tells us how we can replace the labels of an E-graph, is
used in the sections below.
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Definition 2 (Label substitution) Given an E-graphG= (VG,L,EG,ENL,EEL,{sj , t j} j∈{G,NL,EL}),
a set of labelsL′, and a functionh : L→ L′ we define the E-graphh(G) resulting from the substi-
tution ofL alongh ash(G) = (V ′G,L′,E′G,E′NL,E

′
EL,{s

′
j , t
′
j} j∈{G,NL,EL}) with:

• V ′G = VG,E′G = EG,E′NL = ENL,E′EL = EEL,{s′j = sj} j∈{G,NL,EL}, andt ′G = tG

• For everye∈ E′NL : t ′NL(e) = h(tNL(e))

• For everye∈ E′EL : t ′EL(e) = h(tEL(e))

Moreover,h induces the definition of the E-graph morphismh∗ : G→ h(G), with h∗ = 〈idV ,h,
idEG, idENL, idEEL〉.

It is routine to see thath(G) is indeed an E-graph andh∗ is an E-graph morphism. In addition,
it should be obvious that ifh is a bijection thenh∗ is an isomorphism.

2.3 Attributed Graphs

Following [4], an attributed graph is an E-graph whose labels are the values of a given data
algebra that is assumed to be included in the graph.

Definition 3 (Attributed graphs and morphisms) Given a signatureΣ anattributed graphover
Σ is a pair〈G,D〉, whereD is a givenΣ-algebra, called the data algebra of the graph, andG is
an E-graph such that the setLG of labels ofG consists of all the values inD, i.e. LG =

⊎
s∈SDs,

where s is the set of sorts of the data algebra and
⊎

denotes disjoint union.
Given the attributed graphs overΣ AG= 〈G,D〉 andAG′ = 〈G′,D′〉, anattributed graph mor-

phism h: AG→AG′ is a pair〈hgraph,halg〉, wherehgraph is an E-graph morphism,hgraph : G→G′

andhalg is aΣ-homomorphism,halg : D→ D′ such that the values inD are mapped consistently
by hgraph andhalg, i.e. for each sorts∈ S the diagram below commutes:

Ds
halg

//
� _

��

D′s� _

��

LG hgraph

// L′G

Attributed graphs and attributed graph morphisms form the categoryAttGraphs . Moreover,
given a data algebraD we will denote byAttGraphsD the full subcategory ofAttGraphs con-
sisting of attributed graphs overD.

When defining transformation rules over graphs inAttGraphsD, usually the algebra under-
lying the graphs in the rules is notD but a term algebra over the signature ofD. That is, the
attributes in the rules are not values but terms, typically with variables. We call these graphs
term-attributed graphs.

Definition 4 (Term-attributed graphs) Given a signatureΣ = (S,Ω), a term-attributed graph
overΣ is an attributed graph over the algebraTΣ(X), for some S-sorted set of variablesX.

5 / 25 Volume 30 (2010)



Symbolic Attributed Graphs

Moreover, as we will see in Section5, it is also useful to define transformation rules where the
underlying algebra has been defined using a specification. Inparticular this is useful when we
want that the match morphism used to apply the given rule satisfies some specific condition. For
instance, suppose that the graph below is the left-hand sideof a rule.

x1

x2

and suppose that, whenever we apply this rule, we would like that the corresponding match
m satisfies thatm(x1) ≤ m(x2). We can do this as follows. First we define a specificationSP
extendingΣ with the variablesx1 andx2 as constants, and the desired condition as an axiom, i.e.:

SP= Sorts nat,bool
Opns 0 : nat

x1,x2 : nat
suc: nat→ nat
true, f alse: bool
+ : nat×nat→ nat
≤: nat×nat→ bool

Axms (x1 ≤ x2) = true

Now, let TSP be the initial algebra associated toSP, andTSP|Σ its Σ-reduct. InTSP the term
x1 ≤ x2 and the termtrue belong to the same congruence class, which means that they denote
the same element inTSP|Σ. Therefore, any homomorphismm from TSP|Σ into aΣ-algebraD must
satisfy that, in this algebra,m(x1) ≤ m(x2) yields thetrue value. Hence, we should define the
transformation rule over the algebraTSP|Σ.

Definition 5 (Term-Attributed graphs over a specification) Given a signature Σ and a specifi-
cationSP= (Σ′,Ax), with Σ⊆ Σ′, a term-attributed graph over the specification SP extendingΣ
is an attributed graph over the algebraTSP|Σ.

In [4] it has been proven thatAttGraphs is an adhesive HLR category for a given class of
M-morphisms. Let us first recall this notion [4, 13]:

Definition 6 (Adhesive HLR category) A categoryC is adhesive HLR with respect to a class
M of morphisms if:

1. M is a class of monomorphisms closed under isomorphism, composition (i.e. if f : A→
B∈M andg : B→ A∈M theng◦ f ∈M), and decomposition (i.e. ifg◦ f ∈M andg∈M
then f ∈M).

2. C has pushouts and pullbacks along M-morphisms. Moreover, M-morphisms are closed
under pushouts and pullbacks.

3. Pushouts inC along M-morphisms are van Kampen squares, i.e. for any commutative di-
agram as the one below, assuming thath1 andg2 are M-morphisms, if the bottom diagram
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is a pushout and the back faces are pullbacks then the top diagram is a pushout if and only
if the front diagrams are pullbacks.

A′0
h′1

wwooooooooooooooo

h′2

��?
?

?
?

?
?

?

f0

��

A′1
g′1

��?
?

?
?

?
?

?

f1

��

A′2

f2

��

g′2

wwooooooooooooooo

A′3

f3

��

A0

h1
wwooooooooooooooo

h2 ��@
@

@
@

@
@

@
@

A1

g1
  A

A
A

A
A

A
A

A2

g2
wwnnnnnnnnnnnnnnn

A3

The key idea to show thatAttGraphs is adhesive HLR is the choice of the right kind of M-
morphisms. Actually,AttGraphs is not adhesive1 because it fails to satisfy the van Kampen
property for arbitrary monomorphisms.

Theorem 1 AttGraphs is adhesive HLR, with respect to the class of M-morphisms consisting
of all monomorphisms〈hgraph,halg〉 such that halg is an isomorphism.

3 The category of symbolic graphs

A symbolic graph can be seen as the specification of an attributed graph (or of a class of attributed
graphs). In particular, a symbolic graph consists of an E-graphG whose labels are variables,
together with a set of formulasΦ that constrain the possible values of these variables. In this
sense, we consider that a symbolic graph denotes the class ofall attributed graphs where the
variables in the E-graph have been replaced for values that makeΦ true in the given data domain.
For instance, below on the right, we can see an example of a very simple symbolic graph and, on
the left, the (unique) attributed graph denoted by that symbolic graph.

27 45 3712 15

18

x y zd1 d2

d3

with (x = 27)∧ (y = 45)∧z= 37
∧ (d1 = 12)∧ (d2 = 15)∧ (d3 = 18)

However, as said above, a symbolic graph, in general denotesa class of graphs. For instance,
the graph below specifies a class of attributed graphs that includes the graph depicted above on
the left, but it also specifies many other graphs.

1 Roughly speaking, an adhesive category [13] is like an adhesive HLR category, where M is the class of all monomor-
phisms
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x y zd1 d2

d3

with d3≤ d1 +d2

It may be noted that the class of attributed graphs denoted bya symbolic graph may be empty
if the associated condition is unsatisfiable.

Therefore, let us define what is a symbolic graph over a given data algebra.

Definition 7 (Symbolic graphs and morphisms) Asymbolic graphover the dataΣ-algebraD,
with Σ = (S,Ω), is a pair〈G,Φ〉, whereG is an E-graph over anS-sorted set of variablesX =
{Xs}s∈S, i.e. LG = ∪s∈SXs, andΦ is a set of first-orderΣ-formulas built over the free variables in
X and including the elements inD as constants.

Given symbolic graphs〈G1,Φ1〉 and〈G2,Φ2〉 over the same data algebra D, a symbolic graph
morphismh : 〈G1,Φ1〉 → 〈G2,Φ2〉 is an E-graph morphismh : G1→ G2 such thatD |= Φ2⇒
h#(Φ1), whereh#(Φ1) is the set of formulas obtained when replacing inΦ1 every variablex1 in
the set of labels ofG1 by hL(x1).

Symbolic graphs overD together with their morphisms form the categorySymbGraphsD.

In what follows, to simplify notation, even if it may be considered an abuse of notation, we will
write h(Φ) instead ofh#(Φ). Moreover, also for simplicity, we may identify the set of formulas
Φ with the formula consisting of the conjunction of all the formulas inΦ, even if that formula
may be infinitary in the case whereΦ is an infinite set.

Notice that, according to the above definition, given any E-graph G, if D |= Φ⇔ Φ′ then
〈G,Φ〉 and〈G,Φ′〉 are isomorphic inSymbGraphsD.

To show that symbolic graphs are an adhesive HLR category, first, we have to define our no-
tion of M-morphism over symbolic graphs. We consider that M-morphisms are monomorphisms
where the formulas constraining the source and target graphs are equivalent (in most cases they
will just be the same formula). The intuition of this definition is based on the use of our cate-
gory of symbolic graphs to define graph transformation. Moreprecisely, we think that the most
reasonable formulation of graph transformation rules in our context is based on defining a graph
transformation rule as an E-graph transformation rule, together with a set of formulas that glob-
ally constrain and relate all the variables in the rule. Thisis equivalent to consider that the left
and right-hand sides (and also the interface) of a rule are constrained by the same set of formulas.

Definition 8 (M-morphisms) AnM-morphism h: 〈G,Φ〉 → 〈G′,Φ′〉 is a monomorphism such
thatLG

∼= LG′, i.e. hL is a bijection, andD |= h(Φ)⇔Φ′.

It is not difficult to see that M-morphisms satisfy the required properties. Then, to define
pushouts and pullbacks inSymbGraphsD we use pushouts and pullbacks inE−Graphs, re-

spectively. More precisely, the pushout of〈G1,Φ1〉
h1← 〈G0,Φ0〉

h2→ 〈G2,Φ2〉 is a graph〈G3,Φ3〉,

whereG1
g1
→G3

g2
←G2 is the pushout ofG1

h1←G0
h1→G2 andΦ3 is the conjunction ofg1(Φ1) and

g2(Φ2). The case of pullbacks is similar, but the pullback of〈G1,Φ1〉
g1
→ 〈G3,Φ3〉

g2
← 〈G2,Φ2〉

is the graph〈G0,Φ0〉, whereG1
h1← G0

h2→ G2 is the pullback ofG1
g1
→ G3

g2
← G2 andΦ0 is the
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disjunction ofh1(Φ1) andh2(Φ2). However, sinceG0 may include a strict subset of the variables
of Φ1 andΦ2, in this caseΦ0 is existentially quantified by the variables not inG0.

Proposition 1 SymbGraphsD has pushouts and pullbacks.

To see that pushouts and pullbacks preserve M-morphisms we just have to do some basic
logical deduction. If the diagram below is a pushout andh1 is an M-morphism then we have
to prove thatD |= Φ2⇔ (g2(Φ2)∧g1(Φ1)). But, sinceh1 is an M-morphism we may consider
without loss of generality thath1 is the equality on variables andΦ0 = Φ1. Moreover, we may
also consider without loss of generality thatg2 is also the equality on variables and thath2 and
g1 coincide when restricted to the variables. As a consequence, what we would need to prove is
that D |= Φ2⇔ (Φ2∧ h2(Φ0)), sinceg2(Φ2) = Φ2 andh2(Φ0) = g1(Φ1). But this is obvious,
since we know thatD |= Φ2⇐ h2(Φ0). The case of pullbacks is slightly more complex because
of the existential quantifiers inΦ0.

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

Proposition 2 Pushouts and pullbacks preserve M-morphisms.

Finally, to prove the van Kampen property we show that a cube in SymbGraphsD is a van
Kampen square if and only if the underlying cube inE−Graphs is also a van Kampen square.
To do this, again we just need to do some basic logical reasoning. As a consequence we have:

Theorem 2 SymbGraphsD is adhesive HLR.

4 Symbolic graphs and attributed graphs

In this section we present the relation between the categories of symbolic and attributed graphs
over a given data algebra. On one hand, we will see that every symbolic graph may be seen as
denoting a class (a subcategory) of attributed graphs, which may be considered its semantics. On
the other hand, we will see that every attributed graph can berepresented in a canonical way by
a symbolic graph, which means that, for a given data algebra,the category of attributed graphs
can be seen as a subcategory of the corresponding category ofsymbolic graphs.

Definition 9 (Semantics of symbolic graphs) Given a symbolic graph〈G,Φ〉 over a data alge-
braD, its semantics is a class of attributed graphs defined as follows:

Sem(〈G,Φ〉) = {〈σ(G),D〉 | σ : LG→ D andD |= σ(Φ)}

whereσ(G) denotes the graph obtained according to Def.2.

For example, given the symbolic graph below:
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x y zd1 d2

d3

with d3≤ d1 +d2

we have that its semantics would include the following attributed graphs:

27 45 3712 15

18

6 7 88 25

4

Conversely, we can identify every attributed graphAGwith agroundedsymbolic graph whose
semantics consists only ofAG. More precisely a grounded graph is a symbolic graph〈G,Φ〉
that includes a variablexv for each elementv of the data algebra and where the only substitution
σ : LG→ D such thatD |= σ(Φ) is defined for each variablexv asσ(xv) = v.

Definition 10 (Grounded symbolic graphs) A symbolic graph〈G,Φ〉 over a data algebraD is
grounded if

1. LG includes a variable, which we denote byxv, for each valuev∈ D, and

2. For every substitutionσ : LG→ D, such thatD |= σ(Φ), we haveσ(xv) = v, for each
variablexv ∈ LG.

Moreover, we defineGSymbGraphsD as the full subcategory ofSymbGraphsD consisting
of all grounded graphs.

Notice that if〈G,Φ〉 is grounded andσ : LG→ D is a substitution such thatD |= σ(Φ) then
σ ∗ : G→ σ(G) is an isomorphism.

It should be obvious that the semantics of a grounded graph includes exactly one attributed
graph, and that grounded graphs are closed up to isomorphism. Moreover, we can see that
for every attributed graphAG there is a unique grounded symbolic graph (up to isomorphism)
GSG(AG) such thatSem(GSG(AG)) consists ofAG. In particular, the E-graph associated to
GSG(AG) is obtained substituting every data valuev in a set of labels by a variablexv, and the
set of formulas in the symbolic graph consists of an equationxv = v, for each valuev in D.

Definition 11 Given an attributed graphAG= 〈G,D〉, we define thegrounded symbolic graph
associatedto AG, GSG(AG) as the symbolic graph〈G′,Φ〉, where:

• The set of labelsX of the E-graphG′ consists of a variablexv for each elementv∈ D.

• G′ = f ∗(G), where f : D→ X is a substitution such that for everyv∈ D, f (v) = xv.

• Φ = {xv = v | v∈D}.

Proposition 3

1. If SG is grounded then Sem(SG) consists exactly of one attributed graph.
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2. Grounded symbolic graphs are closed up to isomorphism.

3. For each attributed graph AG= 〈G,D〉, Sem(GSG(AG)) = {AG}.

Proof.

1. If SG= 〈G,Φ〉 is grounded, by definition we know that Sem(SG) is not empty, since
Φ is satisfiable inD. Moreover, IfAG1,AG2 ∈ Sem(〈G,Φ〉) then this means that there
are substitutionsσ ,σ ′ : LG→ D such thatD |= σ(Φ) andD |= σ ′(Φ). But if 〈G,Φ〉 is
grounded this means thatLG = {xv | v∈D} and for eachv∈D: σ(xv) = v andσ ′(xv) = v.
But this implies thatσ = σ ′ and thereforeAG1 = AG2.

2. Let SG= 〈G,Φ〉 be a grounded graph and letSG′ = 〈G′,Φ′〉 be isomorphic toSG. This
means that there is an E-graph isomorphismh : G→ G′ such thatD |= Φ⇔ h(Φ′). But
this implies thathL : LG→ LG′ is a bijection and ifσ ′ : LG′ →D is a substitution such that
D |= σ ′(Φ′) thenσ ′ ◦h : LG→D is a substitution such thatD |= σ ′ ◦h(Φ), and this means
that for everyv∈ D σ ′ ◦h(xv) = v. Therefore, if for everyv ∈ D we call yv the variable
h(xv) then we have that, for eachv∈ D, σ ′(yv) = v, which means thatSG′ is grounded.

3. It should be obvious that, by construction,GSG(AG) is grounded and, moreover,AG∈
Sem(GSG(AG)).

Now, suppose thatSG0 = 〈G0,Φ0〉 is a symbolic graph such thatAG= 〈G,D〉 ∈Sem(SG).
Let us prove thatSGandGSG(AG) = 〈G′,ΦAG〉 are isomorphic. First of all, we know that
G = σ ∗0(G0) for a substitutionσ0 such thatD |= σ0(Φ0). But, sinceSG0 is grounded,σ ∗0
is an isomorphism. For similar reasons, we know thatf ∗ : G→G′ is also an isomorphism
therefore f ∗ ◦ σ ∗0 : G0→ G′ is an E-graph isomorphism. Finally, it is easy to see that
D |= Φ⇔ f ◦σ0(Φ0). In particular, ifσ is a substitution such thatD |= σ(Φ) we have to
prove thatD |= σ ◦ f ◦σ0(Φ0) or, equivalently, thatσ ◦ f ◦σ0 = σ0. But this is obvious
since, on one hand, by construction,v∈D: f (v) = xv, and, on the other hand, we know that
for everyv∈ D: σ(xv) = v, which means thatf = σ−1. Conversely, ifσ is a substitution
such thatD |= σ ◦ f ◦σ0(Φ0) we can prove similarly that this implies thatD |= σ(Φ).

It should also be obvious that the encoding of attributed graphs in terms of symbolic graphs
defined byGSGcan be applied to all kinds of attributed graphs, i.e. not only to attributed graphs
defined over a data algebraD, but also to term-attributed graphs or to term-attributed graphs de-
fined over a specificationSP. However, in the latter case, we prefer to define a different encoding
which may actually be seen as a variation ofGSG, that we call itssymbolic representation, de-
notedSR, and which will be used in the following section. In particular, if G is a term-attributed
graph defined over a specificationSP, we defineSR(G) as follows. First, we assume that we
have a function thatchoosesa term from every congruence class of terms inTSP. We call this
function achoice function. Then, the symbolic representation ofG would be〈G′,Φ′〉, whereG′

is obtained replacing each labela in G (i.e. each congruence class inTSP) by the variablext ,
wheret is the term chosen by the choice function when applied toa, and whereΦ′ consists of all
the equations inSPand all the equationsxt = t for each termt returned by the choice function.
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Definition 12 Given a specificationSP= (Σ∪X,Φ), such that there is an initial algebraTSP in
the category ofSP-algebras, we say thatch : TSP→ TΣ∪X is achoice functionfor TSP if for every
element|t ′| ∈ TSP if ch(t) = t ′ thenTSP|= t = t ′, where|t ′| denotes the congruence class oft ′ with
respect to the congruence defined bySP.

Given SP, an attributed graphAG = 〈G,TSP|Σ〉, and a choice functionch for TSP we define
the symbolic representation ofAG with respect toch, SRch(AG) as the symbolic graph〈G′,Φ′〉,
where:

• The set of labels of the E-graphG′ is X∪Y, whereY is disjoint withX and it consists of a
variableych(a) for each elementa∈ TSP such thata /∈ {|x| | x∈ X}.

• G′ = f ∗(G), where f : TSP→Y is a substitution such that for everya∈ TSP, if a /∈ {|x| |
x∈ X} then f (a) = ych(a). Otherwise,f (|x|) = x.

• Φ′ = Φ∪{ych(a) = t | ych(a) ∈Y∧ch(a) = t}.

This means thatG′ includes as labels the variables inX and a variableya for every elementa
in TSPwhich is not the congruence class of a variable inX. This means that the substitutionf is a
bijection. As a consequence, for every attributed graphAG= 〈G,TSP|Σ〉, if SRch(AG) = 〈G′,Φ′〉
thenG andG′ are isomorphic E-graphs.

It may be noted that we have not stated over which algebraD the symbolic graphSRch(AG)
is defined. The reason is that we may consider thatSRch(AG) is a symbolic graph over any
Σ-algebraD. Anyhow, if we consider thatSRch(AG) is defined overTSP|Σ then SRch(AG) is
a grounded graph inSymbGraphsTSP|Σ , i.e. SRch(AG) is an object inGSymbGraphsTSP|Σ .
This means that, following Proposition3, SRch(AG) and GSG(AG) are isomorphic graphs in
SymbGraphsTSP|Σ .

According to Proposition3, we can identify each attributed graph with a grounded sym-
bolic graph, and vice versa. Therefore, we may ask whetherAttGraphsD is isomorphic to
GSymbGraphsD. The answer is negative sinceGSGcannot be made injective on morphisms as
the following counter-example shows.

Example1 Let D be a data algebra consisting of two values of the same sort, which we calla
andb. Let AG be an attributed graph having no graph nodes and no graph edges (i.e. the graph
structure ofAG is empty, which means that it consists only of the label nodesa andb). As a
consequence,GSG(AG) = 〈G,xa = a∧ xb = b〉, whereG is an E-graph consisting only of the
label nodesxa andxb. Now, there are four morphisms,f1, f2, f3 and f4, from AG to itself:

• f1(a) = a, f1(b) = b.

• f2(a) = a, f2(b) = a.

• f3(a) = b, f3(b) = b.

• f4(a) = b, f4(b) = a.

However the only morphism fromGSG(AG) to itself is the identity. For example we may
see that the mappingg : {xa,xb} → {xa,xb}, definedg(xa) = xa, g(xb) = xa, does not define a
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symbolic graph morphism. In particular, ifg is a morphism it should hold thatD |= (xa = a∧xb =
b)⇒ g(xa = a∧ xb = b). But this is equivalent toD |= (xa = a∧ xb = b)⇒ (xa = a∧ xa = b),
which is obviously false.

The problem in the above counter-example is that we assume that we can define any mapping
between the elements of the algebra, while for the variablesof the grounded graphs we are forced
to map the variablexv associated to a value to the corresponding variable associated to the same
value. This problem disappears if the value algebra is finitely generated. In that case, we know
that the only homomorphism of an algebra into itself is the identity causing that morphisms on
attributed graphs should be the identity on data values. This means that, ifD is finitely generated
then the categoriesAttGraphsD andGSymbGraphsD are equivalent. Moreover, this kind of
restriction is quite reasonable since, otherwise, the algebra would include values which we cannot
refer to. Nevertheless, as we will see in the following section, attributed graph transformation
rules are usually defined over non-finitely generated algebras.

Proposition 4 If D is finitely generated thenAttGraphsD andGSymbGraphsD are equivalent.

Proof. First, we will show that GSG can be extended to a functor and, then, thatGSGis full,
faithful and essentially surjective. Letf : 〈G1,D〉 → 〈G2,D〉 be an attributed graph morphism.
SinceD is finitely generated,falg is the identity andfgraph is an E-graph morphism. Hence, if
f : D→XD is a substitution defined for everyv ∈ D as f (v) = xv, andΦ = {xv = v | v ∈ D}
we know thatGSG(〈G1,D〉) = 〈 f (G1),Φ〉 to GSG(〈G2,D〉) = 〈 f (G2),Φ〉. We defineGSG( f )
as follows:

• For everyx∈ {VG,EG,ENL,EEL}: GSG( f )x = fx.

• GSG( f )L is the identity.

Then, it is routine to prove thatGSG( f ) is indeed a symbolic graph morphism.
To prove thatGSG is full, we have to show that ifAG1 = 〈G1,D〉 and AG2 = 〈G2,D〉 are

two attributed graphs andh : GSG(AG1)→GSG(AG2) is a symbolic graph morphism then there
exists an attributed graph morphismf : AG1→ AG2 such thatGSG( f ) = h. But it is enough to
define f as follows:

• For everyx∈ {VG,EG,ENL,EEL}: fx = hx.

• falg (and, therefore,fL) is the identity.

To prove thatGSGis faithful we have to show thatGSGis injective on morphisms, but this is
straightforward by construction. Finally, to prove thatGSGis essentially surjective, we have to
show that for every grounded graphSGthere is another grounded graphSG′, which is isomorphic
to SG, and an attributed graphAG such thatGSG(AG) = SG′. But by Prop3 we know that
Sem(SG) is not empty and that ifAG∈ Sem(SG) satisfies thatGSG(AG) = SG.
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5 Symbolic graph transformation and attributed graph transfor-
mation

In this section we compare attributed graph transformationwith symbolic graph transformation.
This comparison may seem trivial: if attributed graphs may be seen as a special case of symbolic
graphs then we can conclude that attributed graph transformation is a special case of symbolic
graph transformation. However things are not so obvious. Aswe have seen, if the given data
algebraD is finitely generated, we can identify attributed graphs over D with grounded symbolic
graphs overD. This means, in that case, that if transformation rules are spans of M-morphisms
in AttGraphsD then these transformation rules can be considered equivalent to spans of M-
morphisms inGSymbGraphsD, and the application of these rules to a graphAG in AttGraphsD
is equivalent to the transformation ofGSG(AG) by the corresponding rules inGSymbGraphsD.
The problem is that if the graphs that we want to transform arein AttGraphsD, usually, the trans-
formation rules will not be spans of M-morphisms inAttGraphsD, but in AttGraphsD′ , where
D′ is some free algebra overD and, hence, different fromD. That is, typically, transformation
rules over attributed graphs are defined using term attributed graphs.

In order to compare attributed and symbolic graph transformation we start giving an example
of symbolic graph transformation rules and symbolic graph transformation.

Example2 Let us suppose that we are dealing with a class of graphs whoseedges have an
attribute that represents the distance between the source and target nodes. For instance, the
graphG0 below may be an example of a graph in this class:

a
b

c

d

10

20 10

15

30

More precisely, let us consider that the underlying algebrain this class of graphs is the algebra
D of natural numbers, defined over the signatureΣ:

Sorts nat,bool
Opns 0 : nat

suc: nat→ nat
true, f alse: bool
+ : nat×nat→ nat
≤: nat×nat→ bool

We can see the above graph as a grounded symbolic graph. In this case we would need
to replace the values which are bound to the edges of the graphby the variablesx10,x15,x20,
and x30, respectively, and we would need to include the formula(x0 = 0)∧ (x1 = 1)∧ (x2 =
2)∧ ·· ·∧ (x10 = 10)∧ ·· · ∧ (x15 = 15)∧ ·· · ∧ (x20 = 20)∧ ·· · ∧ (x30 = 30)∧ . . . . However, since
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we know that grounded symbolic graphs and attributed graphsare equivalent, for readability, we
will directly use the attributed graph representation.

Let us also suppose that we want to compute the distance of theshortest paths between any
two nodes. The symbolic graph transformation rulep, depicted below, describes how a new
distance can be computed:

d1 d2

L

1 2

3

1 2

3

1 2

3

d1 d2

K

with d3 = d1 +d2

d3

d1 d2

R

If we match1 with d, 2 with c, and3 with b, and the variablesd1,d2, andd3 with 10,15, and
25, respectively2, then we can apply this rule to the above graph, because25 = 10+ 15 holds
in D3, which is the translation of the rule condition, whend1,d2, andd3 are replaced by their
corresponding matches. Therefore, we would transformG0 into G1:

a
b

c

d

10

20 10

15

25

30

Similarly, matching1 with a, 3 with b, and2 with c, and the variablesd1,d2, andd3 with
10,15, and25, respectively, as before, it would be possible to apply the above transformation
rule, getting the graphG2:

a
b

c

d

10

20 10

15

25

30

25

2 To be more precise, we would matchd1,d2, andd3 with the variablesx10,x15, andx25, respectively.
3 Again, to be more precise, the condition that holds is(x10 = 10)∧ (x15 = 15)∧ (x25 = 25)∧ . . . implies (x25 =
x10+x25)
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Now, if we want to get rid of all the edges between two given nodes, except of the one labelled
with the smallest distance, we could use the rulep′ depicted below4:

d1

d2

L′

d1

1 2 1 2 1 2

K′

with (x1≤ x2) = true

d1

R′

We can apply the above rule to the graphG2, matching nodes1 and2 to nodesa andc, and
variablesd1 andd2 to 25 and30, respectively, and also matching the edges bound to the former
variables to the corresponding edges inG2 bound to25 and30. The result would beG3:

a
b

c

d

10

20 10

15

25

25

Remark1 Obviously, symbolic graph transformation rules may be applied not only to grounded
symbolic graphs, but to arbitrary symbolic graphs. Actually, the fact that the category of sym-
bolic graphs is adhesive HLR ensures that the fundamental theory of graph transformation [4]
applies to symbolic graph transformation. However, in practice, it may be impossible to apply
a graph transformation rule to an arbitrary symbolic graph,even if seems very reasonable. For
instance, we may expect that it should be possible to apply the rule p, depicted above, to the
symbolic graphG depicted below on the left, yielding the graph on the right:

x y
1 2

3

with x < y

x y

z

1 2

3

with x < y∧z= x+y

However, this is not possible. The first problem we find to apply the rule p to G is that if
G only includes the variablesx andy then the variabled3 in the rule could only be matched

4 A different alternative for the same problem would be to use some NACs in the first rule to avoid creating more than
one edge between any two nodes
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to x or y. Moreover, it would be unclear where do the variablez in G′ comes from. We can
overcome this problem by assuming thatG already included the variablez, although it was not
explicitly depicted because it was not bounded to any node oredge inG. Actually, we could
think that a symbolic graph is supplied with an unlimited number of variables. However this is
not the main problem. We cannot applyp to G becausex < y does not implyz = x+ y in D.
This problem is solved in [18], where a new form of symbolic graph transformation, calledlazy
graph transformation, is studied. More precisely, using lazy graph transformation,G′ would be
obtained applyingp to G in the obvious way.

Now, let us describe how we can define attributed graph transformation rules having a similar
effect to the symbolic rules in Example2.

Example3 Let us suppose that we want to describe the same procedure as in Example2 for
computing shortest paths, but now using attributed graph transformation rules. In this case, rule
p for computing a new distance between two nodes could be:

d1 d2

L

1 2

3

1 2

3

1 2

3

d1 d2

K

d1 +d2

d1 d2

R

The first thing that we should note is that the graphsG0,G1,G2 and G3 in Example2 are
defined over the algebraD of natural numbers, which means that they include the natural numbers
and the booleans as label nodes, even if they are not depictedin the above figures. But the graphs
L,K, andR in the transformation rulep are not defined over the same algebra. The reason is
that the labelsd1,d2, or d1 + d2 are not inD, since they are not natural numbers. The simplest
solution that we can use here, is to consider thatL,K, andR are term-attributed graphs over the
algebraTΣ({d1,d2}), i.e. the term algebra over the variablesd1 andd2. These graphs would
include as label nodes all the possibleΣ-terms over these two variables, even if they are not
depicted explicitly. Now, according to the example, when weapply p to G0 in Example2 we
define a morphismm from L into G matching 1 with d, 2 with c, and 3 with b. Obviously,m
would also match the edges inL with the edges inG in the expected way and it would also match
d1 with 10 andd2 with 15. But this is not all. The matchm includes aΣ-homomorphismmalg

from TΣ({d1,d2}) to D matching not onlyd1 with 10 and d2 with 15, but also each possible
term overd1 and d2 with its corresponding value, after assigning tod1 and d2 the values10
and 15, respectively. This means that, for instance,m would also matchsuc(d1) with 11 or
suc(d1)≤ suc(suc(d2)) to t. In particular,mwould also matchd1 +d2 with 25, even ifd1+d2 is
not explicitly depicted inL, i.e. we need to compute the resulting value ofd1+d2 when defining
the match, before computing the transformation.

The fact that the values of the underlying algebra are considered (label) nodes of the attributed
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graphs, together with the fact that match morphisms must be homomorphisms for the algebra
part, allow us to do some kind of conditional graph transformation without using a negative
application condition (NAC) [3, 9], but using term-attributed graphs over a given specification,
as discussed in Section2.3. For example, we can have an attributed graph transformation rulep′′,
similar to rulep′ in Example2, for deleting all edges between two nodes except the one labelled
with the shortest distance. In particular,p′′, could be the rule below:

d1

d2

L′

d1

K′

1 2 1 2 1 2

d1

R′

when defined over the algebraTSP|Σ, whereSPis defined:

SP= Sorts nat,bool
Opns 0 : nat

d1,d2 : nat
suc: nat→ nat
true, f alse: bool
+ : nat×nat→ nat
≤: nat×nat→ bool

Axms (d1 ≤ d2) = true

For instance the application ofp′′ to the graphG2 in Example2 matching node1 to nodea
and node2 to nodec would necessarily matchd1 to 25 andd2 to 30 yielding the graphG3, also
in Example2.

Therefore, we can consider that, in a transformation systemfor attributed graphs over aΣ-
algebraD, each ruler is a span on the categoryAttGraphsDr

, whereDr = TSPr |Σ andSPr is a
specificationSPr = (Σr ,Φr), such thatΣr = Σ∪X andΦr is a set ofΣr-equations or conditional
equations, since this ensures the existence of initial algebras. Under this assumption, we may
see that attributed graph transformation systems can be seen as a special case of symbolic graph
transformation system. The idea is that every ruler as above can be represented by a symbolic
transformation ruler ′, using the symbolic representation of the graphs inr. More precisely:

Definition 13 Given a specificationSP= (Σ∪X,Φ), such that there is an initial algebraTSP,
a choice functionch for TSP, and an attributed graph transformation ruler = (〈L,TSP|Σ〉 ←֓
〈K,TSP|Σ〉 →֒ 〈R,TSP|Σ〉), we define the symbolic representation ofr with respect toch, SRch(r)
as the symbolic transformation ruler ′ = 〈L′ ←֓ K′ →֒ R′,Φ′〉 where:

• 〈L′,Φ′〉= SRch(〈L,TSP|Σ〉),
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• 〈K′,Φ′〉= SRch(〈K,TSP|Σ〉),

• 〈R′,Φ′〉= SRch(〈R,TSP|Σ〉).

Remark2 The inclusionsK′ ⊆ L′ and K′ ⊆ R′ are a consequence, first, of the fact that we
assume thatK ⊆ L andK ⊆R5; second, of the definition of how a label substitution is applied to
an E-graph; and third of the fact that the use of the choice function ensures that the substitution
of values inTSP|Σ by variables inY is the same on the three graphsL′, R′, andK′.

Moreover, it may be noticed that, by definition of the choice functions, diagrams (1), (2), (3),
and (4) below are pushouts, wheref ∗L , f ∗K , and f ∗R are, respectively, the isomorphisms relating
L,K, andRwith L′,K′, andR′, and wheref ∗−1

L , f ∗−1
K , and f ∗−1

R are their inverses:

L

(1)f ∗L
��

K

(2)

? _oo � � //

f ∗K
��

R

f ∗R
��

L′

(3)f ∗−1
L

��

K′

(4)

? _oo � � //

f ∗−1
K

��

R′

f ∗−1
R

��
L′ K′? _oo � � // R′ L K? _oo � � // R

Theorem 3 Let r = (AL← AK → AR) be an attributed graph transformation rule, where
AL,AK, and AR are attributed graphs over TSP|Σ and SP= (Σ∪X,Φ), let ch be a choice function
for TSP, and let r′ = SRch(r), then for every attributed graph AG= 〈G,D〉 and every morphism
m : AL→ AG there is a morphism m′ : 〈SRch(AL),Φ′〉 →GSG(AG) such that AG is transformed
into AH by r with match m, i.e. AG⇒m

r AH, if and only if GSG(AG)⇒m′
r ′ GSG(AH). Conversely,

for every morphism m′ : 〈SRch(AL),Φ′〉→GSG(AG) there is a morphism m: AL→AG such that
GSG(AG)⇒m′

r ′ GSG(AH) if and only if AG⇒m
r AH.

Proof. Let us assume thatAL = 〈L,TSP|Σ〉,AK = 〈K,TSP|Σ〉,AR= 〈R,TSP|Σ〉), andr ′ = 〈L′ ←֓
K′ →֒ R′,Φ′〉, and let us consider the following diagram inE−Graphs:

L′

(3)f ∗−1
L

��

K′

(4)

? _oo � � //

f ∗−1
K

��

R′

f ∗−1
R

��
L

(5)m
��

K

(6)

? _oo � � //

��

R

��
G

(7)g∗L
��

I

(8)

? _

h1

oo � �

h2

//

g∗K
��

H

g∗R
��

G′ I ′? _

h′1

oo � �

h′2

// H ′

where (5) and (6) are the pushouts defining the application ofr to AG with matchm, 〈G′,Ψ〉 =
GSG(AG),〈I ′,Ψ〉 = GSG(〈I ,TSP|Σ〉), 〈H ′,Ψ〉 = GSG(〈H,TSP|Σ〉), g∗L,g

∗
K ,g∗R are, respectively,

the isomorphisms relatingG, I ,H with G′, I ′,H ′, and finally the morphismsh′i , for i = 1,2 are

5 Since the morphisms relatingL andR are M-morphisms, without loss of generality, we may assume that they are
the identity on the algebra part and an inclusion on the graphpart
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defined as follows. For every elemente∈ I ′ which is not a label,h′i(e) = hi(e), and for every
label e, h′i(e) = e. It is routine to see that, by definition ofGSGand as a consequence of the
fact thath1 andh2 are M-morphisms,h′1 andh′2 are morphisms and, moreover, diagrams (7) and
(8) not only commute but are pushouts. Therefore, since we know that diagrams (3) and (4) are
pushouts, then diagrams (3)+(5)+(7) and (4)+(6)+(8) are also pushouts. Therefore, if we define
m′ = g∗L ◦m◦ f ∗−1

L and we show thatm′ is a morphism inSymbGraphsD the first part of the
theorem will be proved. Therefore, we have to prove thatD |= Ψ⇒m′(Φ′).

We now that

Φ′ = Φ∪{ya = t | ya ∈Y∧ch(a) = t} andΨ = {xv = v | v∈ D}

We also know that the only substitutionσ such thatD |= σ(Ψ) is defined∀v ∈ D : σ(xv) =
v. Therefore, we have to show thatD |= σ(m′(Φ′)) or, equivalently,D |= σ(m′(Φ)) andD |=
σ(m′({ye = t | ye ∈ Y∧ ch(e) = t})). Finally, by definition, on the one hand, we have that for
everya∈ TSP|Σ we havem′(ya) = xv, wherem(a) = v, which means thatσ(m′(ya)) = m(a), and
on the other hand, for eachx∈ X, σ(m′(x)) = m(x).

Now, let t1 = t2 be an equation inΦ. Sincemalg is aΣ-homomorphism andTSP satisfies this
equation, we have thatD |= m(t1) = m(t2), implying D |= σ(m′(t1)) = σ(m′(t2)).

Let ya = t andch(a) = t. Then, on the one hand, we have thatσ(m′(ya)) = m(a) and, on the
other, sincech(a) = t we have that ina= |t|, implying σ(m′(t)) = m(a). Therefore,σ(m′(ya)) =
σ(m′(t)).

The proof of the second part of the theorem is similar to the proof of the first part. We only
have to consider the diagram below:

L

(1)f ∗L
��

K

(2)

? _oo � � //

f ∗K
��

R

f ∗R
��

L′

(9)m′

��

K′

(10)

? _oo � � //

��

R′

��
G′

(11)g∗−1
L

��

I ′

(12)

? _

h′1

oo � �

h′2

//

g∗−1
K

��

H ′

g∗−1
R

��
G I? _

h1

oo � �

h2

// H

The theorem above shows that attributed graph transformation can be seen as a special case of
symbolic graph transformation. One may wonder whether bothkind of transformations can be
considered equivalent in the sense that every symbolic graph transformation ruler can be coded
into an attributed graph transformation ruler ′ such that the application ofr to a grounded graph
produces the same effect as the application ofr ′ to the corresponding attributed graph. The an-
swer is negative as the counter-example below shows, which means that symbolic transformation
rules have more definitional power than attributed graph transformation rules.
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Example4 Let us suppose that the following symbolic graphSG is the left-hand side of a
symbolic graph transformation ruler:

x y

with (x = 0)∨ (y = 0)∨ (x = y)

where the signature of the data domain is:

Sorts nat
Opns 0 : nat

suc: nat→ nat

and where the given data algebraD is the algebra of natural numbers. This means that, ifr could
be represented by an attributed graph transformation ruler ′, thenr ′ would include as a left-hand
side an attributed graphAG like:

a1 a2

wherea1 anda2 are elements of someΣ-algebraA. Moreover, there should exist a matchm from
SGinto any grounded symbolic graphSG′ if and only if there exists an equivalent matchm′ from
AG into the corresponding attributed graph. In particular, given the symbolic graph:

x y

with (x = n1)∧ (y = n2)

wheren1 and n2 are two natural numbers, there should exist a homomorphism from A to D
mappinga1 to n1 anda2 to n2 if and only if n1 = 0 or n2 = 0 or n1 = n2. Let us see that this is
impossible.

In particular, first, we will see thata1 anda2 cannot be the value of a ground term (i.e. they
cannot be obtained applying thesucoperation some number of times to0. Then, we will see
that neithera1 nor a2 can be obtained applying any number of times thesucoperation to some
other value in the algebra. But, then this means that we can match a1 and a2 to any pair of
natural numbers, which implies that for instance we can match a1 to 2 anda2 to 1, violating the
condition in the symbolic graph.

First, we may notice that we may assume without loss of generality that A satisfies the axiom:

e : suc(x) = suc(y)⇒ x = y

since for every homomorphismh : A→ D there is a unique homomorphismh′ : A/≡e→ D such
that the diagram below commutes:

A

i
��

h
// D

A/≡e

h′

77ooooooooooooo
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where≡e is the congruence onA defined by the axiome and i is the canonical homomorphism
from A into its quotient, mapping every element fromA into its congruence class. Vice versa, for
every homomorphismh′ : A/≡e→ D there is a unique homomorphismh : A→ D such that the
diagram above commutes. Finally, we know thath(a1) = 0 or h(a2) = 0 or h(a1) = h(a2) if and
only if h′(|a1|) = 0 or h′(|a2|) = 0 or h′(|a1|) = h′(|a2|).

Therefore, let us assume thatA satisfies the above axiom. Now, let us notice that neithera1

nora2 can be the value of some ground termsucn(0), for 0≤ n. The reason is that, otherwise, if
n1 = n2 6= n the match would be impossible. We can also see that it is not possible thata1 is the
value of some termsucn(a0), for 1≤ n and any a0 ∈ A. Otherwise, ifn1 = 0 the match would
be impossible, against the assumption, since if the matchm′ satisfiesm′(a0) = n0 thenm′(a1)
would ben+n0. For similar reasons, we know that it is not possible thata2 is the value of some
termsucn(a0), for 1≤ n and anya0 ∈ A. As a consequence, we can see that

A′ = A\{a | (a = sucnA(a1))∨ (a = sucnA(a2)) for somen≥ 0}

is a subalgebra ofA. Suppose, otherwise, thatA′ is not a subalgebra ofA. This would mean
that there is an elementa′ ∈ A′ such thatsucA(a′) ∈ A\A′. But this would mean thatsucA(a′) =
sucnA(a1) or sucA(a′) = sucnA(a2). But this would imply one of the following cases:

1. sucA(a′) = a1 or sucA(a′) = a2. These two cases are impossible according to what we have
proved above.

2. sucA(a′) = sucnA(a1) or sucA(a′) = sucnA(a2) for n≥ 1. However, sinceA is assumed to
satisfy the axiome, this means thata′ = sucn−1

A (a1) or a′ = sucn−1
A (a2), implying that

a′ ∈ A\A′, against the hypothesis.

As a consequence of the previous facts we know that every homomorphismh : A→ D is
uniquely determined by a homomorphismh′ : A′→ D and by the values ofh(a1) andh(a2), in
the sense that givenh′, there is a uniqueh extendingh′ satisfyingh(a1) = n1 andh(a2) = n2, for
anyn1,n2 ∈ D, and vice versa. But this implies that there is a morphismm′ : A→ D satisfying
m′(a1) 6= m′(a2).

In general, a symbolic transformation ruler ′ = 〈L′ ←֓ K′ →֒ R′,Φ′〉 over aΣ-algebra D can
be simulated by an attributed graph transformation ruler = (AL← AK→ AR) over aΣ-algebra
A, if the specificationSP, whose signature isΣ plus the labels inr ′ (considered as constants),
and whose set of axioms isΦ′, has an initial algebraTSP. The problem in the previous counter-
example is that the associated specification has no initial algebra. In particular, to ensure the
existence of initial algebrasΦ′ should include only equations and conditional equations.

6 Related work and conclusion

In this paper we have presented a new approach to deal with attributed graphs based on the new
notion of symbolic graphs, showing that the new category is adhesive HLR, which means that it
is adequate to define graph transformation.
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As far as we know, there are essentially three kinds of approaches to define attributed graphs
and attributed graph transformation. First, we have the approaches [10, 7] where an attributed
graph is a pair(G,D) consisting of a graphG and a data algebraD whose values are nodes in
G. Second, we have the approaches [12, 1] where attributed graphs are seen as algebras over
a given signatureASIG, whereASIGis the union of two signaturesASSIG, the graph signature
andDSIG, the data signature, that overlap in the value sorts. In particular, ASSIGmay be seen
as a representation of the graph part of an attributed graph.In [2] these two approaches are
compared showing that they are, up to a certain point, equivalent. Finally, we have the approach
[19] based on the use of labelled graphs to represent attributedgraphs, and of rule schemas to
define graph transformations involving computations on thelabels. That approach has some
similarities with our approach, including the simplicity provided by the separation of the algebra
and the graph part of attributed graphs. However, that approach has also some drawbacks that
are briefly discussed in the introduction.

However, a fundamental theory of graph transformation has been formulated only for [7], as
a consequence of its characterization as an adhesive HLR category (for more detail see [4]). For
this reason, in this paper we have essentially used that approach to study it in connection with
our approach based on symbolic graphs.

As we have seen, our approach can be considered an abstract version of [7], since we work at
the specification level, rather than dealing directly with algebras to define the attributes. How-
ever, as we have shown, it has more expressive power than [7] for the definition of graph trans-
formation rules. In addition to the expressive power, usingsymbolic attributed graphs has some
other advantages. For instance, in [15] working with symbolic attributed graphs simplifies cer-
tain kinds of operations defined on transformation rules. For example, this is the case of the
operation that, given two transformation rulesr1 andr2, wherer1 is a subrule ofr2, yields a rule
r3 that computes the remainder ofr2 with respect tor1, i.e. what has not been computed byr1

but is computed byr2. In particular, when working with symbolic graphs the attribute conditions
of r3 are just a simple combination of the attribute conditions ofr1 andr2. However, if we would
have worked with attributed graphs, computing the attributes forr3 may involve some complex
equation solving.

Moreover, we think that there are further aspects related tosymbolic graph transformations
that deserve some further study. In particular, using logical conditions to specify the attributes of
a graph may allow us to postpone finding the solution to attribute constraints when performing
graph transformation. This can make attributed graph transformation more efficient. In addition,
a generalization of this idea would allow us to define a certain form of narrowing that may be
useful in connection to several kind of problems.
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