
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2011

(WowKiVS 2011)

ALEVIN - A Framework to Develop, Compare, and Analyze Virtual
Network Embedding Algorithms

Andreas Fischer, Juan Felipe Botero, Michael Duelli, Daniel Schlosser, Xavier Hesselbach,
Hermann de Meer

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

ALEVIN - A Framework to Develop, Compare, and Analyze Virtual
Network Embedding Algorithms

Andreas Fischer1, Juan Felipe Botero2, Michael Duelli3, Daniel Schlosser3, Xavier
Hesselbach2, Hermann de Meer1

1andreas.fischer@uni-passau.de, demeer@uni-passau.de
Universität Passau, Innstr. 43, 94032 Passau, Germany

2jfbotero@entel.upc.edu, xavierh@entel.upc.edu
Universitat Politècnica de Catalunya, Jordi Girona Street 1-3, 08034 Barcelona, Spain

3duelli@informatik.uni-wuerzburg.de, schlosser@informatik.uni-wuerzburg.de
University of Würzburg, Am Hubland, 97074 Würzburg, Germany

Abstract: Network virtualization is recognized as an enabling technology for the
Future Internet. Applying virtualization of network resources leads to the problem
of mapping virtual resources to physical resources, known as “Virtual Network Em-
bedding” (VNE). Several algorithms attempting to solve this problem have been
discussed in the literature, so far. However, comparison of VNE algorithms is hard,
as each algorithm focuses on different criteria. To that end, we introduce a frame-
work to compare different algorithms according to a set of metrics, which allow to
evaluate the algorithms and compute their results on a given scenario for arbitrary
parameters.

Keywords: Virtual network, network virtualization, network embedding, embed-
ding algorithms, evaluation framework

1 Introduction

Virtualization of network resources has been identified as key technology for Future Internet
research [BFM10] and is actively used in current research testbeds [CJ09, SGH+10]. By virtu-
alizing both node and link resources of a substrate network, multiple virtual network topologies
with widely varying characteristics can be created and cohosted on the same physical hardware.
Moreover, the abstraction introduced by the resource virtualization mechanisms allows network
operators to manage and modify networks in a highly flexible and dynamic way. A Virtual Net-
work (VN), in this sense, is a combination of active and passive network elements (network
nodes and network links) on top of a Substrate Network (SN). Virtual nodes are interconnected
through virtual links, forming a network that can be represented by a directed graph, where the
virtual nodes correspond to the nodes in the graph and the virtual links correspond to the edges.

The flexibility gained through such an approach can be used to increase sustainability (in
terms of cost-effectiveness) of deployed network hardware. By dynamically mapping virtual
resources onto physical hardware, the benefit gained from existing hardware can be maximized.
However, this leads to an optimization problem: In order to achieve efficient operation of such
virtualized networks, it is paramount to develop algorithms that distribute virtual resources on

1 / 12 Volume 37 (2011)

mailto:andreas.fischer@uni-passau.de
mailto:demeer@uni-passau.de
mailto:jfbotero@entel.upc.edu
mailto:xavierh@entel.upc.edu
mailto:duelli@informatik.uni-wuerzburg.de
mailto:schlosser@informatik.uni-wuerzburg.de

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

Substrate Network

Virtual Network 1

Virtual Network 2

Figure 1: Two Virtual Networks embedded in a Substrate Network.

a physical infrastructure in an optimal way. This optimality can be computed with regard to
different parameters, ranging from load distribution over energy-efficiency to security of the
networks. The problem of embedding virtual networks in a substrate network in an optimal
way is known as the Virtual Network Embedding (VNE) problem. Several algorithms have
already been proposed to solve this problem. Comparison of these algorithms is difficult, as
typically each algorithm optimizes only for a subset of all possible network parameters. In order
to compare the efficiency of these algorithms, a set of appropriate metrics has to be found. Here,
a framework is presented that allows to compare VNE algorithms according to different metrics.

The remainder of this paper is organized as follows: Section 2 discusses the VNE problem in
detail. Section 3 gives an overview of the different parameters that can be taken into account for
the embedding. Section 4 presents VNE algorithms that have been proposed so far. Section 5
presents the framework and metrics proposed in this paper to compare different VNE algorithms.
Finally, Section 6 concludes this paper and discusses our intended future work in this area.

2 The Virtual Network Embedding Problem

2.1 Overview

The Virtual Network Embedding problem deals with the efficient mapping of a set of Virtual
Network Requests (VNRs) to substrate nodes and links. A VNR is a set of virtual nodes that must
be mapped to a set of substrate nodes with sufficient resources to accomplish the requirements,
and a set of virtual links to be mapped to a set of paths in the substrate network. This embedding
should optimize the allocation of physical resources. Embeddings can be optimized with regard
to performance (e.g. CPU capacity, link bandwidth), energy-efficiency (e.g. power usage of a
node), security (e.g. node reliability, link encryption), or other parameters. Moreover, several
side constraints, such as fixed mappings for certain virtual nodes, might further influence the
embedding.

Figure 1 shows two VNs that are embedded in a SN. A node in the SN can host several virtual
nodes. Mapping of virtual links is more complex in this example. A virtual link is mapped
onto a path in the SN (i.e. several physical resources are combined to form a virtual resource).

Proc. WowKiVS 2011 2 / 12

ECEASST

Table 1: Terminology used throughout this paper

Term Description

G = (V,A) G is a graph representing a SN. It consists of a set of vertices (V)
and a set of directed edges (arcs, A) connecting the vertices.

Gk = (V k,Ak) Gk is the graph of the k-th Virtual Network request. Like G, it
consists of a set of vertices (V k) connected with a set of arcs (Ak).

f : V k→V f is the function that maps virtual nodes to nodes in the substrate
network.

P = {G′|G′ ⊂ G} P is the set of all directed paths G′ in G
g : Ak→ 2P \ /0 g is the function that maps virtual links to a set of directed paths (an

element of the power set of all paths 2P) in the substrate network.
HH : Ak×V → R HH is a function that defines the demand of a virtual link (ik, jk) ∈

Ak on a given Hidden Hop l ∈V .

Mapping a virtual link to a path in the SN obviously uses resources of the physical links on the
path. However, there are also physical nodes on the path that will be traversed by the virtual
link. These are called “Hidden Hops” here. The virtual link will also consume resources of all
Hidden Hops on the paths. Furthermore, several virtual links can use the same physical link (i.e.
a physical resource can be partitioned into several virtual resources). For the mapping of virtual
nodes and virtual links, several algorithms can be considered. Due to the differences in node and
link mapping, most algorithms treat node and link mapping as separate steps. It can be shown
that the resulting network embedding problem is NP-hard. Practical algorithms, therefore, use
heuristic approaches to obtain a near optimum value.

Algorithms solving the VNE problem come in two forms: offline algorithms and online al-
gorithms. Offline algorithms take a given set of VNRs together with the description of a SN
and compute a near optimal embedding for these requests. While this approach achieves good
results with regard to optimality, it does not consider a dynamic arrival process of the VNRs
(i.e. each VNR arrives at a different time and must be mapped in real time). Online algorithms,
on the other hand, take VNRs on a FIFO-basis, redistributing virtual resources as the requests
arrive. While this approach is better suited to deal with high dynamicity, it tends to come at the
cost of less optimal solutions. Things might be further complicated by looking at heterogeneous
resources in the SN (i.e. resources that are described by different sets of parameters or that have
widely varying attributes). Adapting algorithms to support such an assumption therefore remains
an open issue for now.

2.2 Formal problem description

Formally, the VNE problem can be described with the terminology given in Table 1. A physical
network is given as a directed graph G = (V,A) where vertices represent the nodes in the network
and directed edges represent the links between nodes. On this network, virtual networks – each
described by its own directed graph Gk = (V k,Ak) – are mapped by assigning a physical node
for each virtual node and a physical path for each virtual link.

3 / 12 Volume 37 (2011)

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

Figure 2: A categorization of parameters that can be considered in the VNE problem.

The function performing this operation is the mapping function that has to be realized by the
VNE algorithms. This function can be divided into node and link mapping. The node mapping
function f : V k→V maps nodes from the virtual network requests to substrate nodes. Likewise,
the link mapping function is defined as g : Ak→ 2P where 2P consists of all sets of directed paths
in the SN. If g maps to a set with more than one element, this allows to consider algorithms
solving the VNE problem with the use of multipath routing. Otherwise, the element in the set is
the path used to realize the virtual link. Both functions may not exceed the resources of either a
node or a link in the SN. An optimal embedding then is a function that satisfies all of the above
restrictions and additionally satisfies a given optimization objective (e.g. to maximize the spare
resources in a SN).

3 Parameters

In this section, we present a categorization of parameters for substrate as well as virtual nodes
and links. In addition, a mapping of parameters is given that affect hops on a path through the
SN which are hidden on a virtual link.

3.1 Categorization

We divide the parameters for nodes and links in three categories regarding their mutability, ac-
cessibility, and interdependency with other parameters:

• Primary parameters are fixed properties of the node or link itself. These parameters –
e.g. CPU or memory of a node, capacity and delay of a link – are capabilities that do not
depend on another node’s or link’s state, but only on its utilization. Primary parameters
can be directly requested by a virtual network. We denote the set of primary parameters
by PRI.
• Secondary parameters are derived attributes of a node or link. These parameters depend

on the state of its node or link, i.e. other primary and/or secondary parameters. For in-
stance, the loss probability of a node depends on its CPU load, which can, in turn, indicate
the queue size at a router, and the transmission delay of a virtual link is the sum of the
transmission and propagation delay of all traversed substrate links and the processing and
forward delay of all traversed substrate nodes.

Proc. WowKiVS 2011 4 / 12

ECEASST

To prevent cyclic dependencies, we only consider the dependency on primary parameters.
Secondary parameters can also be directly requested by a virtual network. We denote the
set of secondary parameters by SEC.
• Indirect parameters are requested for a whole substrate path including traversed links and

nodes. For instance, the demand for a resilient virtual link comprises that traversed sub-
strate nodes and links fulfill certain failure probabilities and that the primary path is disjoint
from the backup path in the substrate to avoid a shared risk group.
These parameters are not specific to nodes and links. Hence, indirect parameters are not
proportional to the number of virtual networks embedded. Indirect parameters can only be
indirectly requested by a VNR.

In Figure 2, we illustrated some common parameters that can be considered in the VNE problem.
It is important to note, that some of the parameters have to be handled differently for substrate

and virtual network entities. For instance, CPU resource is a primary (i.e. fixed) parameter
for a substrate node while it is a secondary parameter on a virtual link which comprises the
CPU resource on the nodes that are traversed in the substrate to realize this virtual link. As a
consequence, we have to define a mapping of virtual to substrate parameters including requests
to hidden hops.

3.2 Parameter Mapping

To declare secondary parameters, we need to define how the mapping of primary parameters to
secondary parameters is calculated. Furthermore, we need a mapping how traffic affects a hidden
hop.

Primary to Secondary

We define PRI and SEC as the set of primary and secondary parameters respectively. Secondary
parameters are calculated from a set of surjective functions mapsec : PRIn→ SEC,sec∈ SEC,1≤
n ≤ |PRI|. Once all primary substrate node and link parameters have been defined, a planning
algorithm would compute each secondary parameter sec∈ SEC, based on the node characteristics
and using the mapping function mapsec.

Hidden Hops Mapping

Hidden hops, introduced in [BHFD13], makes reference to the intermediate nodes of a directed
path in the SN that is mapping a specific virtual link of a VNR. We claim that a hidden hop
entails a resource demand because it has to perform packet forwarding of the traffic that will
pass through this virtual link.

Hidden-hop demand depends on the demand in the virtual links and the node type. There-
fore, for each hidden-hop l in a SN path mapping a virtual link, the demand is a function
HH(ik, jk, l), l ∈ V,(ik, jk) ∈ Ak calculated from a combination of the virtual link demand and
the node characteristics. It closely depends on the specific mapping scenario and equipment
type.

5 / 12 Volume 37 (2011)

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

Virtual Network id = 1
CPU = 50

id = 3
CPU = 20

bw =5

id = 1
CPU = 100

id = 3
CPU = 100

bw =100

Substrate Network

bw =100

(annotations are resources)

(annotations are demands)

id = 2
CPU = 100

demandHH =
1.2 ‧ 5

=

6 (CPU Units)

Substrate Node

CPU: 2.66 GHz

Bandwidth: 1 Gbps

Capacity

Figure 3: Illustration of parameter categories and their application.

As an example of a hidden hop demand calculation, let’s consider a SN transporting packets
with size of 1500 bytes among substrate nodes as illustrated in Figure 3 (node type extracted
from [LYG10]). Assuming that CPU and bandwidth (BW) capacity units are scaled in a way that
100 CPU units = 2.66 GHz and 100 BW units = 1Gbps, the hidden hops CPU demand, due to
the virtual link bandwidth demand, is calculated based on the number of cycles used to process
a packet in the node when it is totally loaded (40000, in this case). One bandwidth demand unit
is equivalent to ∼ 833 packets/sec, therefore, the amount of CPU units needed to process it is
1.2. That is, the hidden hops belonging to the SN path mapped to the virtual link (ik, jk) CPU
demand will be 1.2 multiplied by the units of BW demand of the virtual link (ik, jk).

4 Main Virtual Network Embedding Algorithms

Due to their novelty and relevance, we selected a set of algorithms to be implemented in the
first version of this framework. These algorithms only consider mapping of VNs - protocols
for changing VNs are not considered here. We propose a taxonomy to classify the different
parameters associated with them (Table 2). Next, the procedures used by each VNE algorithm
are described.

4.1 Stress Based Approach

One of the first offline approaches to solve VNE is presented in [ZA06] where the objective is to
maintain a balanced link and node stress in the SN. Stress of a SN node is the number of virtual
nodes assigned to it whereas stress of a SN link is the number of virtual links containing it. To
achieve that objective, the combination of both, maximum node stress and maximum link stress,
is minimized. A heuristic approach is proposed that divides a VNR into a number of connected
sub-VNs, each with star topology. After VN subdivision, virtual node and link mappings are
realized in each sub-VN. First, node mapping is solved using a greedy algorithm and then, link
mapping is solved using a shortest path solution between the mapped nodes.

Proc. WowKiVS 2011 6 / 12

ECEASST

Table 2: VNE algorithms taxonomy

Classification Parameter Description

Environment
Type

Online VNRs arrive dynamically and they are not known in advance
Offline All VNRs are known in advance so the VN requests service order

can be organized in advance
Algorithm
Type

Dynamic After several VNEs are performed the algorithm proposes mech-
anisms to reoptimize performed embeddings

Static No reoptimizing mechanisms are performed
Virtual Link
Assignment

Multi-Path (MP) Multiple SN paths with different splitting ratio to map each vir-
tual link

Single-Path (SP) Each virtual link is mapped to just one SN path.

Hidden Hops Considered Hidden Hop demands are considered when VNE is performed
Not Considered No Hidden Hop demand is considered.

4.2 Path Splitting VNE Approach

The maximization of a long average revenue, i.e. the weighted sum of VNR’s bandwidth and
CPU demands, is the objective of the algorithm proposed in [YYRC08]. The online algorithm
queues a group of incoming VNRs (decreasingly ordered by revenue) during a time window and
tries to efficiently allocate them. If one request is not accepted it is sent to the request queue
waiting for resources release in the SN until a specified timeout, then it is dropped of the queue.

Virtual node and link mappings for each VNR are performed separately. Node mapping is
performed using a greedy algorithm that maps virtual nodes with higher revenues to SN nodes
with higher “available resources”. Link mapping is accomplished in two ways: One is the multi-
path (MP) optimal solution that avoids the NP-completeness of the problem and the second is
to map each virtual link to the shortest-path, accomplishing capacity constraints, between the
corresponding mapped nodes in the SN.

4.3 Coordinated Node and Link Mapping VNE Approach

An online algorithm proposing a new virtual node mapping stage is presented in [CRB09]: Vir-
tual link mapping is performed as in [YYRC08]. A new set of important node constraints are
added in the node mapping; geographical location for substrate and virtual nodes and a non-
negative distance per VNR indicating how far a node of the VNR can be of its demanded loca-
tion.

The node mapping stage is performed by defining an augmented graph over the substrate
network; introducing a set of meta-nodes, one per virtual node, each connected to a cluster of
candidate SN nodes obeying location and capacity constraints. The algorithm solves the VNE
problem by using a Mixed Integer Programming (MIP). Its objective is to minimize the cost, i.e.
the weighted sum of the bandwidth and CPU allocated in the SN links to fulfill VNR demands, of
embedding a VNR. To avoid the NP-completeness of the MIP, its linear programming relaxation
is solved, and the obtained solution is rounded in two ways: deterministically or randomly.

7 / 12 Volume 37 (2011)

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

4.4 Subgraph Isomorphism Detection VNE Approach

Lischka and Karl [LK09] have proposed an approach based on the Subgraph Isomorphism De-
tection problem (SID). In graph theory, an isomorphism of graphs G and H (G'H) is a bijection
between the vertex sets of G and H, m : V (G)→ V (H), such that any two vertices i and j of G
are adjacent in G if and only if m(i) and m(j) are adjacent in H. The NP-complete SID problem
tries to find a subgraph Gsg of G (Gsg ⊂ G) such that Gsg ' H.

The VNE problem can be reduced to this well known problem. They propose an heuristic
algorithm consisting on finding an isomorphic subgraph (representing the VNR), accomplishing
the demands, inside the substrate network. The main contribution of this approach is to realize
in the same stage the node and link mapping This feature helps saving run-time cost when bad
link mapping decisions are taken.

4.5 Topology-Aware and Re-Optimization VNE Approach

Two important contributions to improve the acceptance rate of VNRs are made in [BCB10]:
Topology-Aware Embedding: There are critical SN links and nodes contributing in the net-

work partition when mapped; a link or node is susceptible of partition when its removal divides
the SN in two different networks. These critical resources must be considered in the objective
function of current approaches.

Re-optimizing Bottlenecked Embeddings: As VNs are embedded with an associated life-
time, arbitrary values of them can cause the whole SN embedding to become inefficient. Periodic
reconfiguration schemes do not work for real situations (incurred overhead of virtual links and
nodes reallocation). The approach proposed here is to act whenever a VNR gets rejected. The
solution consists on identifying virtual links and nodes causing VNR rejection and then, relocate
them to less critical regions of the SN.

4.6 Hidden Hops VNE Approach

In previous work [BHFD13], the important and realistic concept of hidden hops was introduced
in VNE. This work considered the offline version of the algorithm. The virtual node mapping is
not considered, whereas virtual link mapping is performed following k-shortest path approach,
taking into account the hidden hops demand when each virtual link is mapped.

This work proposes to realize the VNE with demands of CPU in nodes and bandwidth in nodes
but also considers VNR without explicit demand requirements. The proposed algorithm maps the
requests with demands, trying to maximize the spare resources after embedding of each VNR
(equivalent to minimize the cost). Then, remaining VNRs are mapped, by distributing equal
resources to each.

4.7 Summary

To summarize this section, we built Table 3 that lists the characteristics of the presented VNE
algorithms. It can be noted that only CPU in nodes and bandwidth in links are considered by
the main algorithms to solve VNE. The introduction of a more complete set of parameters to
the main algorithms (possibly adding more constraints) could be helpful in the consideration of

Proc. WowKiVS 2011 8 / 12

ECEASST

Table 3: Characteristics of the main proposals to solve VNE.
Optimization Link and Node Taxonomy Link Node

Objective Constraints Heuristic Heuristic

R
ef

er
en

ce

B
al

an
ce

d
St

re
ss

R
ev

en
ue

C
os

t

Fe
as

ib
le

E
m

be
dd

in
g

C
os

t+
C

I

U
nc

on
st

ra
in

ed

C
PU

+
B

an
dw

id
th

E
nv

ir
on

m
en

tT
yp

e

A
lg

or
ith

m
Ty

pe

V
ir

tu
al

L
in

k
A

ss
ig

nm
en

t

H
id

de
n

H
op

s

[ZA06] X X

O
ffl

in
e STA/DYN SP NC SH-P GS

[BHFD13] X X STA SP C SH-P NC

[YYRC08] X X STA MP NC MFP GAR

[CRB09] X X

O
nl

in
e STA MP NC MFP R-MIP

[LK09] X X STA SP NC SID SID

[BCB10] X X DYN MP NC MFP R-MIP

STA:Static SP: Single-Path NC: Not Considered SH-P: Shortest Path GS: Greedy Stress
DYN:Dynamic MP: Multi-Path C: Considered SID: Subgraph Isomorphism Detection

GAR: Greedy Available Resources R-MIP: Rounding Mixed Integer Program MFP: Multicommodity Flow Problem

different embedding goals (Energy efficiency, resiliency, QoS related parameters, etc.). It would
also be very useful to evaluate an algorithm in both, offline and online environments; this would
allow to compare different kind of algorithms in more detail. ALEVIN will consider a larger and
extendable set of network parameters (see Section 3). It will also allow to evaluate algorithms in
online and offline environments.

5 Framework and Evaluation Metrics

We developed a software framework to support the development of new algorithms, ease their
comparison and analysis, and apply arbitrary evaluation metrics. In this section, we introduce
this framework – named ALEVIN – and outline its capabilities regarding parameters, algorithms,
and evaluations. After implementing new algorithms and defining their optimization parameters,
this framework can be used to test and compare those algorithms.

5.1 ALEVIN – ALgorithms for Embedding VIrtual Networks

The focus in the development of ALEVIN [VNR10] is on modularity and efficient handling of
arbitrary parameters for resources and demands, as described in Section 3, and the support of
integration of new and existing algorithms (cf. Section 4) and evaluation metrics. For platform
independency, ALEVIN is written in Java. ALEVIN’s graphical user interface (GUI) and multi-
layer visualization component is based on the MuLaViTo project [DO10] which enables us to
visualize and handle the substrate and arbitrary virtual networks as directed graphs. Figure 4
depicts the architecture of ALEVIN and highlights the modular interaction of parameters for

9 / 12 Volume 37 (2011)

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

AbstractResource AbstractDemand

NetworkStackSubstrateNetwork VirtualNetwork

IAlgorithm IEvaluation

Mapping

Visualization

M
u

L
a
V

iT
o

shows modifies

based on

shows

co
n

si
st

s
o
f co

n
sists o

f

1 1..*

1

1..*

1

1..*
1 1 1 1

calculates evaluates

Figure 4: The framework ALEVIN and its modularity in parameters, algorithms, and evaluations.

substrate as well as virtual networks, algorithms, and evaluation.
ALEVIN provides the ability to illustrate the deployment of resources in the SN and demands

in an arbitrary number of VNs as well as the mapping of demands on resources calculated by
a VNE algorithm. Moreover, ALEVIN can be used to create VNE scenarios as well as import
and export them using an XML-based exchange format. ALEVIN is completely modular re-
garding the addition of new parameters to the VNE model. Using the visitor design pattern in a
sophisticated way, we are able to avoid any casts to concrete demand/resource classes. Thus, the
number of parameters is not performance-relevant and a convenient implementation of arbitrary
parameters is possible. To increase ALEVIN’s modularity and to make it a flexible and exten-
sible platform to compare existing and upcoming algorithms, the implementation of algorithms
is kept independent of the resource/demand implementation. To that end, a simple interface is
provided defining the rough structure of an algorithm and connecting its output to the GUI as
illustrated in Figure 4.

5.2 Evaluation and Comparison of VNE Algorithms

ALEVIN also is our basis for the evaluation and comparison of VNE algorithms. Therefore,
ALEVIN provides a simple interface to add evaluation metrics which are independent of the
implemented parameters and algorithms. This further emphasizes the modularity of ALEVIN.

During and after the calculation of a mapping of either one or several virtual network demands,
different evaluation metrics can be applied. Table 4 list several evaluation metrics. These evalu-
ation metrics can be combined in an optimization objective/strategy for a whole VNE scenario.
For instance, a optimization objective for a VNE scenario might be to minimize the maximum
link utilization, maximize the residual bandwidth capacity, minimize the total cost for the sub-
strate provider, maximize the acceptance ratio, minimize the overall energy consumption, or
minimize run time. Due to the ability to combine arbitrary evaluation metrics and optimization
objectives in combination with arbitrary parameters and a simple interface for VNE algorithms,
ALEVIN is a powerful framework for the comparison and analysis of VNE algorithms regarding
different evaluation metrics and optimization objectives.

Proc. WowKiVS 2011 10 / 12

ECEASST

Table 4: Evaluation metrics used by the algorithms in Section 4.

Metric Description

Node stress The number of virtual nodes mapped on top of a substrate node
Link stress The number of virtual links using a substrate link
Revenue A weighted sum of the demands (CPU, bandwidth, . . .) of a virtual network
Cost A weighted sum of the resources allocated by a virtual network mapping
Acceptance ratio Ratio of number of accepted to total virtual network request
Node utilization Utilization measured in each resource-type node parameter
Link utilization Utilization measured in each resource-type link parameter
Cost/revenue ratio –
Splitting ratio Percentage of virtual network requests using path splitting

6 Conclusion and Future Work

With the expected rise of network virtualization as enabler for flexible and autonomic network
management, the decision on how to map virtual resources to physical resources is gaining im-
portance. Achieving optimal VNEs, therefore, is an important problem to solve for Future In-
ternet infrastructures. In this paper, the VNE problem has been described in detail. Several
algorithms solving the VNE problem have been presented. It was argued that it is necessary to
compare these algorithms according to different metrics. This will allow to rank different algo-
rithms against each other and choose the best solution for a given embedding problem. ALEVIN
- a framework that allows to implement these algorithms and compute solutions for different
networks - was presented and discussed in this paper. ALEVIN is developed as open source
and will be released under GNU General Public License (GPL) and GNU Lesser General Public
License (LGPL). ALEVIN as well as the VNE exchange format will be made publicly available
on [VNR10].

Building on this work, we plan to extend the implementation of the software. More algorithms
should be added and rated. Moreover, the investigation of these algorithms leads to interesting
new problems: both, energy-efficiency and security related problems in VNE have not been
investigated in depth, yet. A promising way forward would be to investigate how existing algo-
rithms can be adapted to support these additional criteria.

Acknowledgements: The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) in the
context of the “Euro-NF” Network of Excellence (grant agreement no. 216366) through the Spe-
cific Joint Developments and Experiments Project “Virtual Network Resource Embedding Algo-
rithms” (VNREAL) and in the context of the ResumeNet project, grant agreement no. 224619.
It has been also partially supported by the “Comissionat per a Universitats i Recerca del DIUE”
from the “Generalitat de Catalunya”, the Social European Budget (“Fons Social Europeu”), and
by the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF
Förderkennzeichen 01BP0775) in the context of the EUREKA project “100 Gbit/s Carrier-Grade
Ethernet Transport Technologies (CELTIC CP4-001)”.

11 / 12 Volume 37 (2011)

A Framework to Develop, Compare, and Analyze Virtual Network Embedding Algorithms

Bibliography

[BCB10] N. F. Butt, N. M. Chowdhury, R. Boutaba. Topology-Awareness and Reoptimization
Mechanism for Virtual Network Embedding. In Networking. Pp. 27–39. 2010.

[BFM10] A. Berl, A. Fischer, H. de Meer. Virtualisierung im Future Internet - Virtualisierungs-
methoden und Anwendungen. Informatik-Spektrum 33(2):186–194, Apr. 2010.

[BHFD13] J. F. Botero, X. Hesselbach, A. Fischer, H. De Meer. Optimal Mapping of Virtual
Networks with Hidden Hops. Telecommunication Systems: Modelling, Analysis, De-
sign and Management “Accepted - To be published”, 2013.

[CJ09] J. Carapinha, J. Jiménez. Network virtualization: a view from the bottom. In Pro-
ceedings of the 1st ACM workshop on Virtualized infrastructure systems and archi-
tectures. VISA ’09, pp. 73–80. ACM, New York, NY, USA, 2009.

[CRB09] N. M. M. K. Chowdhury, M. R. Rahman, R. Boutaba. Virtual Network Embedding
with Coordinated Node and Link Mapping. In Proc. IEEE INFOCOM. Apr. 2009.

[DO10] M. Duelli, J. Ott. MuLaViTo – Multi-Layer Visualization Tool. Nov. 2010.
http://mulavito.sf.net

[LK09] J. Lischka, H. Karl. A virtual network mapping algorithm based on subgraph iso-
morphism detection. In Proceedings of the 1st ACM workshop on Virtualized infras-
tructure systems and architectures. Pp. 81–88. New York, USA, Aug. 2009.

[LYG10] Y. Liao, D. Yin, L. Gao. Europa: efficient user mode packet forwarding in net-
work virtualization. In INM/WREN’10: Proceedings of the 2010 internet network
management conference on Research on enterprise networking. Pp. 6–6. USENIX
Association, Berkeley, CA, USA, 2010.

[SGH+10] D. Schwerdel, D. Günther, R. Henjes, B. Reuther, P. Müller. German-Lab Experi-
mental Facility. Future Internet Symposium (FIS) 2010, 9 2010.

[VNR10] VNREAL. ALEVIN – ALgorithms for Embedding VIrtual Networks. Nov. 2010.
http://alevin.sf.net

[YYRC08] M. Yu, Y. Yi, J. Rexford, M. Chiang. Rethinking Virtual Network Embedding: Sub-
strate Support for Path Splitting and Migration. ACM SIGCOMM CCR 38(2):17–29,
Apr. 2008.

[ZA06] Y. Zhu, M. Ammar. Algorithms for assigning substrate network resources to virtual
network components. In Proc. IEEE INFOCOM. Pp. 2812–2823. Apr. 2006.

Proc. WowKiVS 2011 12 / 12

http://mulavito.sf.net
http://alevin.sf.net

