Electronic Communications of the EASST

Volume 32 (2010)

Proceedings of the
Fourth International Workshop on
Graph-Based Tools
(GraBaTs 2010)

Incremental Pattern Matching in Graph-Based State Space Exploration
Amir Hossein Ghamarian, Arash Jalali, Arend Rensink

12 pages

Guest Editors: Juan de Lara, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Ea ECEASST

Incremental Pattern Matching in Graph-Based State Space
Exploration

Amir Hossein Ghamarian?!, Arash Jalali?, Arend Rensink®

1 ghamarian@cs.utwente.nl
3 rensink@cs.utwente.nl
Department of Computer Science,
University of Twente, The Netherlands

2 arash@netstairs.com
NetStairs.com, Inc.

Abstract: Graph pattern matching is among the most costly operations in any graph
transformation system. Incremental pattern matching aims at reducing thisycost
incrementally updating, as opposed to totally recalculating, the possible matches
of rules in the graph grammar at each step of the transformation. In this pape
an implementation of one such algorithm is discussed with respect terRbeVE
toolset, with a special emphasis put on state space exploration. Specifizally,
shall discuss exploration strategies that could better harness the pasitizets of
incremental pattern matching in order to gain better performance.

Keywords: Graph Transformation, Incremental Pattern Matching, State-space Ex-
ploration

1 Introduction

Graph transformation (GT) applications range from model transforma@&@d 06, FUJ0G
VBO07] to software verification KK08, Ren04k. Irrespective of its applications, GT consists
mainly of the operations of finding the images of the rules in the host graphmagching,
and transforming the host graph according to the rules. One of the majoleprs of GT in
general is the complexity of the matching operation. Different algorithms ege proposed in
the literature as optimized matching algorithri®8/V07, GBG'06, BOR" 08, BGT91]. These
algorithms are mainly based on one of the two approachssasth plaf{GBG' 06, HVV07] or
incremental matchinBOR ™08, BGT91].

In the search plan approach, a match for a rule is found based on a@laa set of primitive
matching operations, custom-made for each rule using a heuristic algorithroe @& host
graph on which the GT rules are to be applied, is modified by a rule applicéti@plans must
be employed anew to once again find the matches of all the rules in the nevaltedgabst graph.

Incremental matching, on the other hand, relies on a special data strbesed on all the
rules of the GT system, which is capable of maintaining information about panthtomplete
matches of all the rules within the host graph. Any changes made to the tapdt gre also
applied to this data structure, and the information about partial and total reasdherementally

1/12 Volume 32 (2010)

mailto:ghamarian@cs.utwente.nl
mailto:rensink@cs.utwente.nl
mailto:arash@netstairs.com

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

updated where needed. In this way, all the matches of all rules aresateagily available, with
the extra cost of having to keep the network up to date.

Prior work in the GT literature suggests that incremental matching generagigrdorms the
search plan approacBGT91]. In particular, a very efficient and intuitive algorithm for incre-
mental pattern matching is based on the idea®fe networks For87. However, incremental
matching has only been used in tools that focus on model transforma&tioR [08]. GROOVE
[Ren04h, on the other hand, is a general purpose graph transformation todheithain distin-
guishing capability of generating the entire (finite) state space of a grapfdraenation system.
The current implementation uses search plans in its matching engine. In tleis pagnvesti-
gate the use of RETE-based algorithm i ROOVE, with the hypothesis that, because we actually
apply all rule matches at every state, it should be possible to gain perfoenaateast as much
as for theviATRA case reported infOR*08). In addition to extendingRETE to support some
special features afROOVETrules, in particular the quantified rules describedRrfi04aRK09],
the main contributions of this paper are as follows:

e It introduces a state space exploration strategy that makes efficienf wserpe as the
matching algorithm.

e It reports experiments showing that the resultRETE implementation outperforms the
previous search plan-based approach.

The next section explains the basic functionalitya®ooVE Section3 specifies theRETE ap-
proaches together with our adaptation. Sectiaiescribes state space exploration and proposes
an efficient strategy suitable f®@eTE. Section5 shows the experimental results. Finally, Sec-
tion 6 discusses directions for future work.

2 Introduction to GROOVE

In this section we briefly provide an overview of ta@oovEtool.

Graphs and rules

Graphs inGRoOOVE consist of nodes and labelled edges. An edge is a binary arrow between
nodes, or from a node to itself. Node labels can either be node typeg®nilhich are a special
kind of loop edge. Graphs are transformed by applying rules. A rulsistnof: A) A pattern
that must be present in the host graph in order for the rule to be appli@&bBubpatterns that
must be absent in the host graph in order for the rule to be applicablde@)eits (nodes and
edges) to be deleted from the graph; D) Elements (nhodes and edgesaddédxtto the graph;
E) Pairs of nodes that are to be merged. All these elements are combinedsintgieagraph;
colours and shapes are used to distinguish them.

Figurel shows a small example. The overall effect of the rule is to search-fandc-nodes
connected by ahild-edge but without @arent-edge to &-node, and to modify this by removing
thechild-edge and addingrent-edge to a freskh-node. For instance, the rule can be applied to
the graph on the left hand side of Figurén two ways, one of which results in the graph on the
right hand side. (The other application removes the athieredge.)

Quantification
One of the special features GROOVE is the support of universal quantification in rules (see

Proc. GraBaTs 2010 2/12

Ea ECEASST

Legend:
[Al-2—{a] Matched and preserved
fy, [A}+» >4 Forbidden
parer; pejer! [} © Al Matched and deleted
[cf- chia * [al-v+{4] created
Figure 1: ExamplesrooVvErule and legend
.
parent parent parent
cpild child cpild child child
(a) Source graph (b) Target graph

Figure 2: Example application of the rule in Figure

[RKO9]). A universally quantified (sub)rule is one that will be appliedaib subgraphs that
satisfy the relevant application conditions, rather than just a single onetlas gtandard case.
Such a rule can itself be much more concise, and also result in a smaller stege t@an the
equivalent set of rules that would ordinarily be needed. In fact, tification can baenestedn the
sense that universally quantified rules can contain existential subamdsjice versa. Among
other things, this makes it possible to formulate powerful application conditg@esRen043).

State space exploration

The core functionality ofGROOVE is to recursively apply all rules from a predefined set (the
graph transformation system) to a given start graph, and to all graplesaged by such applica-
tions. This results in atate spaceonsisting of the generated graphs, which is a rich source of
information for further analysis.

In fact, GROOVE offers a choice of the exploration strategy to be usgbth-first full explo-
ration, which also allows on-the-fly LTL model checkingreadth-first full explorationwhich
enables finding shortest paths to certain graphsjiaedr, random linear andconditionalex-
ploration which allow simulation without covering all states, for instance if thie Sjgace is too
large. (In other words, for the latter strategie®o0OVEbehaves like other GT tools.)

3 RETE basics

TheRETE algorithm was first proposed by Forgydr89 as an efficient means of pattern match-
ing in production rule systems, in which the system is expected to apply thizsewhose
left-hand side (LHS) has a matching pattern in a given knowledge-basater This original al-
gorithm was meant to be used in text-based expert systems; Bunke aetexhliped and adapted
the idea behind theReTE algorithm to graph grammar8{T91].

The basic idea behinRETE is that the pattern represented by the LHS of a rule can be grad-
ually broken down into smaller sub-patterns all the way down to the basic efemiea graph

3/12 Volume 32 (2010)

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

pattern, i.e. nodes and edges. By applying the same process to all thenralgsaph gram-
mar, it is possible to construct a network of patterns, starting from simplesnadd edges, to
more complex combinations that ultimately lead to the full pattern of the LHS of the. rlikés
network, called th&eTE network, is itself a directed acyclic graph.

3.1 Classic RETE

Figure3 shows a simple graph grammar with two rules and its correspormdimg network. To
avoid confusion, a node in tieeTE network is usually referred to as aanode As originally
defined in BGT9]], a RETE network consists of the following types of n-node:

Root This is the only node with no incoming edges. This node is in charge of iageiv
and passing nodes and edges down the network during runtime, i.e. whetningas being
performed. The root is always succeded by edge-checker amdatmtker nodes.

Edge-checkers Edge-checkers pass down the network those edges in the host gaahhvl
a specific label. Some edge-checkers only accept loop edges while soep any edge. In
Figure 3c there are three edge-checkers under the root, one of which onlpgtadoep edges
with the label ‘current’.

Node-checker sNode-checkers appear only immediately after the root, but their uERMOVE
is much more limited as nodes have no labels of their ovdROOVE. A node-checker can there-
fore be present in RETE network only when the LHS of a rule consists of one or more isolated
nodes.

Subgraph-checkers They combine the matches they receive from the upper n-nodes, also
known asantecedentsand combine them into bigger matches if they overlap on certain nodes.
These are indicated in Figu& by node equality relations at the bottom of each subgraph-
checker. Subgraph-checkers always have two antecedents, ctynrefemred to adeft and
right antecedents. Matches received from these antecedents are storednemories called
the left and right memories.

Production nodes These nodes represent the LHS of a rule. If a match reaches a pooduc
node, it would mean that it is a valid match for the LHS of that rule. The setl gloasible
matches of a production node in the host graph is callezbitdlict set

The classicRETE algorithm for graphs consists of two phases: #tatic constructiorand
the dynamicphase. During the static construction phase,RE&E network is built by going
through each rule of the grammar starting with the very basic elements in its LH®odes
and edges. Initially the network consists only of the root. When processadjrst rule in
the grammar, a separate edge-checker is created and added unaet floe each edge in the
LHS. The algorithm will then try to combine those edge-checkers into sphegheckers. Each
subgraph-checker has a set of node equality relations, which sigeifydly the left and right
antecedents of the subgraph-checker are connected to each dtisen-fode merging process
continues until a single subgraph-checker corresponding to the LS e is built. At this
point a production node is added under the subgraph checker. Fsultsequent rules in the
grammar, the algorithm will try as far as possible to reuse the existing n-nbdedetails of the
staticRETE network construction algorithm please refer BsT91].

During the dynamic phase, sometimes simply referred toiatsme the RETE algorithm will
make use of the network to collectively find the conflict sets of all the rulesairgtammar. At

Proc. GraBaTs 2010 4712

Ea ECEASST

’ this

- this/D this———~ "
g -

(a) Grammar rule 'hop’ (b) Grammar rule 'hopBack’

receive receive receive

Edge Checker Edge Checker Edge Checker
n40—this—>n41 n37-next->n38 n39-current->n39

receive . receive
X receive

next next

this

- Subgraph Checker receive

- n39-current->n39 receive |- Subgraph Checker receive

- n40-this—>n41 - n37-next->n38
—n40=n39 - n40-this—>n41
receive —n38=ndl
= receive - Subgraph Checker
- Subgraph Checker ™ _ n37?ne’>3<t—>n38
= AET/=TEA=AE - n39-current—>n39
- n39—current—>n39

- n40-this—>n41
—n41=n37

- n40-this—>n41
—n40=n39

receive

(c) Rete Network for 'hop’ and 'hopBack’
Figure 3: Two rules and their associatgTe network

the very beginning of the dynamic phase, REre network is initialized by feeding all the edges
and nodes of the host graph into the root node. The root node willgmgs what it receives
to its node- and edge-checker successors, and they in turn passeditimate matches to their
subgraph-checker successors. The subgraph-checkers toyntuiree the partial matches they
receive from their left and right antecedents if possible, and will passtimbined matches
down to their own successors. This process continues until all the adgesodes of the host
graph are propagated through tReTE network. The matches that end up in the memories of
production nodes will constitute the conflict set of the corresponding fTite contents of all
the memories of n-nodes collectively define sitateof the RETE network.

TheRETE state should be updated after a rule is applied to reflect the changes maglbastth
graph by that rule. This is where the incremental natureedfe can be seen, as the network is
updated by propagating only those elements that have been deleted dibgdte rule’s RHS.

3.2 Extensionsadded to RETEin GROOVE

RETE has already been implemented in other GT tools suctiasrA [BOR08]. Specific
features in each tool call for changes to the clagsite algorithm to make pattern matching for
rules that use them possible. Among such featurexrinoveare NACs, quantifiers, and support
for rules with disconnected LHSs. In this section, we shall briefly covesdtenhancements.

Quantifiers and nested conditians

Universal and existential quantifiers GROOVE have been implemented based on the idea of
nested transformation rule®RK09]. Essentially in this scheme, a graph predicate is repre-
sented by a multi-level nested rule, where each subrule or subconditidiovieé to find its
own matches as if it were an autonomous rule. Through a process oaldkedmalgamation

5/12 Volume 32 (2010)

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

[TB94], the matches of the lower level conditions are collected based on the sesnaintie
gquantifier at each level to form the overall set of matches for a gramnwar ru

TheREeTEalgorithm has been implementeddmroovEto accommodate this nested predicate
approach. In other words, threTE network has been extended@ROOVEto support the idea
of a subcondition rather than a quantifier, leaving the complexities of amalganuatiof the
RETE network data structure. To accomplish this, we have added a new typaadento the
RETEnetwork called &ondition-checkerA condition-checker is in many ways like a production
node; in fact production nodes are implemented ROOVE as specialized condition-checkers.
During the static construction phase, the construction algorithm not onlyegetarough the
grammar’s rules but also through the sub-rules of any complex rule teairteaor more levels
of quantification in its LHS. During runtime, ttReETE network can therefore be queried for the
conflict set of any (sub)condition at any level. This approach not belys keep the complexity
of quantifiers and their semantics out of the basic pattern matching algorithiih also allows
us to exploit any possible overlap of patterns among subconditions, asanwordnation is made
between subgraph-checkers based on the level of subconditionrthagsociated with.

Negative application conditions

In GROOVE, negative application conditions (NACs) are implemented as subconditionghér
words a rule with both positive and negative parts is represented agan legel positive rule
together with one or more sub-rules that consist of all the negative raodesdges. Aoot map
in the NAC specifies the connection points between the negative and thegaesitigraphs.

Following this structure, theETE implementation irROOVE provisions for each NAC sub-
condition a speciatomposite condition-checkénat matches against the positive part of the
main rule connected to the negative part represented by the NAC. Compmsitiéion-checkers
are constructed in theeTE network in a way that complete positive matches are gradually aug-
mented with the elements of the negative pattern to form composite matches. Bmpasie
match is prefixed by the positive match that is taigbited by the trailing negative pattern.

Once a composite match is found, the positive prefix of that match is reported pmsitive
condition-checker as an inhibited match. The positive condition-chedegsa record of the
number of times a positive match is inhibited, and so when it is queried for itdctat, it will
only return those positive matches whose inhibition counter is zero.

This implementation allows thReTE network to maintain its original simplicity and to pro-
vide the possibility of reuse of subgraph-checkers throughout theonlethile the prefix struc-
ture allows for rapid determintaion of inhibited matches. In VIATR®(R"08] NACs are im-
plemented using a special type of subgraph-checker, calegative nodethat passes through
only those positive matches that do not join with any negative matches.

Rules with disconnected LHSs

The originalReTE algorithm as outlined ingGT91] assumes that each rule’s LHS is a connected
graph. There, itis suggested that in order to support disconnectédfef sides, one can assume
specialdummy edgethat bridge between the disjoint components of the LHS.

In GROOVE a slight modification has been made to the algorithm as well as to the structure
of the RETE network so that any production node (or more generally a conditionkenewith
several disconnected components in its LHS has a special type of pubgracker as its only
antecedent, calledreon-connected subgraph-checkitiat receives the matches of all the disjoint

Proc. GraBaTs 2010 6/12

Ea ECEASST

components of the LHS and produces all the combinations. Unlike the dumreyagggoach,
this scheme remains faithful to the general philosophy of reusing subgtagckers.

Domino removal

For performance reasons, we have implemented the removal updatesetike a domino, i.e.
matches are linked together and once a deleted edge match reaches subdraph-checker,
GROOVEwill follow the dependency links between smaller and larger matches and tem
from the memories they reside in rather than going through the procesertdmchecking and
combining them in each subgraph-checker.

4 State space exploration

Having explained the static and dynamic part of #&rE network, in this section, we first
briefly show howRETE is used in the context of other existing GT tools in linear strategies.
Subsequently, we focus on haveTE can be used to explore the state space exhaustively.

4.1 Linear exploration and random linear exploration

In most GT tools, especially those with a model transformation focus [8é&0g VBO7)), it is
only needed to support a linear path through the state space. In othds,wbeach state, only
one match out of all the matches of all rules is picked and applied to genegatexhnew state.
In RETE, the state of the network is updated based on the changes made to theapbsiga
result of the application of a rule. This process repeats at each nemdyajed state. There are
different methods for choosing a match at each state. In linear strategseldcted match can
be the very first match that is found, or rules can have priorities and thdesadt the rules with
higher priorities are chosen first. If this match is selected randomly, theggtiigtealled random
linear. The overall scheme of this strategy is given in Algoritfitandom) LinearStrategy

Algorithm (Random) LinearStrateg§, H)
Input: A Graph GrammaG

Input: Input graphH

1. rete<buildReteNetworkp)

2. rete.initialized)

3. whiledesirable

4, do (rule, matchx—rete.selectAMatch()
5 (x match corresponds to the rulg
6 o «applyMatch(rule, matchHl)

7 Rete.updateé)

4.2 Exhaustive state space exploration

There are different strategies for state space generatiam.oVE supports the main two algo-
rithms, i.e., Depth-First Search (DFS) and Breadth-First Search (Bis®xplained in the linear
strategy, theRETE network must be initialized in the beginning of the strategy, and as changes
occur to the host graph, tiReETE state also needs to be updated accordingly. The number of
RETE updates as well as the size of updates (number of elements added andéddmoav the

7/12 Volume 32 (2010)

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

(a) An example of DFS (b) An example of BFS (c) An example of a
strategy USINGRETE. strategy USINGRETE. customizedRETEDFS.

Figure 4: Different state space exploration strategies USHTE

graph) can substantially affect the performance of the exploration gyrafégure4a and Fig-
ure 4b show two sample state spaces traversed using the conventional DFS SrsirBiegies
respectively. They also show the order in which HETE state is updated, if these strategies are
used together witRETE as the matching algorithm.

Circles represent the states and the solid arrows between them reirassitions (rule ap-
plications) between two states. The dashed arrows signify updatesrpedon theRETE state.
The number on each state is the order in which it is generated. The nunelséte pach dashed
line show the order in which thReTE state is updated, which could be more than once.

In Figure 4athe exploration starts from state 1, then in the DFS scheme the first match is
selected and applied, consequently the successor state is discoveeat:=TE state is updated
according to the changes resulting from the rule application in state 1, wtidk te state 2
(dashed arrow 1). The same procedure then repeats until it reaelestswhere there are
no more successors and the exploration strategy needs to backtraekbadkirack requires
the matches of state 3 to be found again. In other wordsr#wE update 4 is the reverse of
update 3. This time however, the second match must be chosen froretieconflict sets,
and this process continues until all states are fully explored. It is impddardte that in every
backtrack, a new (next) match ought to be selected, which implies that adfiidedamong the
matches needs to be maintained witRIBTE; a requirement that can be very expensive. It is
also important to note that during each backtrack,RB&E network will inevitably findall the
possible matches at that state, including those that have already investigated

Figure 4b follows the same principle but in a BFS fashion. As can be seen, there ame ma
duplicaterRETE updates, as a state needs to be visited several times.

In order to avoid duplicate updates, as well as to avoid having to keep tifiictsets of the
rules sorted in a fixed order, we propose another strategy which is mita®ls for a matching
algorithm like RETE, in which all matches are readily available at each state. Figushows
this customized strategy, which we cadte-dfs In this approach, once a state is reactat,
the successor states are generated and stored in a stack. The stdok# daja-structure that
contains the generated but not yet fully-explored states. The nextsta¢eexplored is thus the
state at top. This will cause the rest of the exploration strategy to continuBkSdashion.

The rete-dfs algorithm is explained in detail in Algoritmaie DfsStrategyThe RETE network

Proc. GraBaTs 2010 8/12

Ea ECEASST

is built based on the gramm@;, and then gets initialized with the host gragh The host graph
is added to the stack, and as long as there are states in the stavéxtbecedure is called.

Algorithm reteDfsStrategis, H) Algorithm nex{(G, rete)

Input: A Graph Gramma6 Input: A Graph GrammaG

Input: Input graphH Input: UpdatedrRETE staterete

1. rete<buildReteNetworkG) 1. atState—stack.top()

2. rete.initialized) 2. matchSet-reteState.getMatchSet()

3. stack.pusi{) 3. for every (rule, match) in matchSet

4. whilestack is not empty 4, do newState—applyMatch(rule, match, atState)

5 5

6

do next(G, rete) stack.push(newState)
updateAtState(atState, rete)

In procedurenextall the matches of the current state are queried from the upeategstate.
Each rule match is applied according to its corresponding rule and the nemdyajed states are
added to the stack. ThampdateAtStatés invoked in order to update threTE state.

Algorithm updateAtStaf@t Staterete)
Input: The currently explored statgState
Input: UpdatedrRETE staterete

1. 6«0

2. if atState# stack.top()

3 then atState—stack.top()

4, else (x no new state is put on stack in the last calhextx)

5 repeat

6 0 <0+ atState.getFromParentDeltag)detFromParentDelta returns the changes when
going from the parent of atState to atStafe

7. triedState—atState

8. stack.pop()

9. atState—stack.top()

10. until atState.parent§- triedState.parentQr atState= null

11. if atStateZ null
12. then & <61+ atState.getFromParentDelta()
13. rete.updaté)

If in procedurenextany new state was added to the stack (atState is not equal to the top
of stack), that would mean that the exploration is going forward. In thee¢,cgdateAtState
just applies the changes made by the last rule applicafipno(that state and thReTE state
is updated according 0. Each state saved on the stack maintains the changes occurred when
moving from its parent to itself; information which is obtained by calljggjFromParentDelta
However, if during the course of the procedurext nothing new was added to the stack,
updateAtStatevould start backtracking by removing states from the stack. During beedktr
updateAtStataccumulates id all the parent-to-child changes of the states taken from the stack.
The backtracking continues untipdateAtStateeaches a state where forward exploration is
again possible. This happens when the top of the stack is a sibling of §shperent with) the
last state popped out of the stack. At this stage the backtracking phagr iamal it is time to
apply the accumulated changes stored igo far. However, since the changes stored iare
from parent to child and we have been travelling in the opposite direclioreds to be inverted
first (as indicated by~ in line 12). In addition to the inverted, the update to theETE state

9/12 Volume 32 (2010)

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

32-bit 3GB 64-bit 48GB
Grammar States Trans| Incr. [s] | Search Plan [s] Incr. [s] | Search Plan [s]
rete-dfs| DFS BFS| rete-dfs| DFS BFS
appendl 10535 28819 1.9 2.2 1.8 2.1 1.9 2.0

append?2 707280 2603238 250.8 - - 53.7| 63.0 68.2
carPlatl 110366 369601 9.3 8.7 9.3 11.9 9.9 10.4
carPlat2 | 2988061 11929077 1859.1 - - 221.5| 206.4 209.8
crashCarsl] 278528 1236992 21.3| 27.0 32.6 33.1| 41.7 52.1
crashCars2 589824 2768896 242.7| 276.9 470.8 66.8| 91.4 108.8
petrinetl 2377 4645 2.1 4.4 45 2.7 51 5.2
petrinet2 23828 47656 29.9| 935 945 36.9| 81.7 84.0

Table 1: Exploration strategies’ execution times

should also include one forward step from the shared parent to the dibling at the stack top.

It is important to note that thes®s between the states are accumulated and the st&eTa
gets updated only once. This approach decreases the amount oésimaegled to be propagated
throughRETE. Maximum gain is achieved in cases when the changes made by succeasive
cancel each other out, e.g. an edge is added by one transition and celnycweother.

5 Experimental results and evaluation

We compared the rete-dfs exploration strategy, which g&sE as an incremental matching
algorithm, with DFS and BFS strategies, which use search plan for matchiagx®@¢uted all
of these strategies on four different grammeas platooning crashing carsappendand apetri

net (all available fromGROOVE repository Ren04f). Each grammar was run on two different
start graphsCar platooningwas taken from this year's GT tool contest, and ¢thashing cars
andappendhave been devised by tlerooOVEteam. Crashing carsmodels a traffic light, and
appendsimulates concurrent invocations of the append method of a list. The PeexBmple
was inspired by the simple production systemhtap9q. These grammars are chosen as they
not only make use of the special featuress@ooVE grammars such as NACs and quantifiers
but they also cover various levels of complexity in terms of the size of the' iuS and the
size of host graph. The experiments were run on a machine with a dubXeta X5550
2.67GHz processor. Two series of experiments were performed @vbit Zind 64-bit Java
Virtual Machines with 3GB and 48GB of RAM respectively. The resultssii@avn in Tablel.

The first column shows the name of the grammar along with a sequence nwapieEsenting
the size of the start graphs used to run the exploration. The larger thersgnumber, the
larger the size of the corresponding start graph. The second andtiintins are the numbers
of states and transitions in the state space, respectively. The next sixtsodilnow the execution
times of the three strategies in seconds, over the 32-bit and the 64-bit. JXMgphen (-) in
the execution time means that the experiment did not finish due to an out-of-meruaption.
Please note that the reported time is the whole execution time, and the matching timeei®a f
of this time. To make the total time a more precise indicator of the matching time, isonmarphis
checking has been turned off in these experiments.

Proc. GraBaTs 2010 10/12

Ea ECEASST

Table 1 shows that as the size of the start graph increases, with the exceptioa cdrth
platooningexample, in all the other examples rete-dfs’s speed performance sespgag other
two strategies, becoming more than three times faster iRetreNetexample. Speed is however
not the only area where rete-dfs performs better than the other two. Ivetiyecase ofcar
platooningas well asappend2it is evident thaReTEis more well-behaved in terms of memory
usage than Search Plan, as rete-dfs is the only strategy that has mftauhmemory in the
32-bit mode. DFS and BFS have only been able to close in on rete-dffaft@ore memory
had been made available to them in the 64-bit case.

For the case of thear platooningexample,RETES inherent advantage in finding all the
matches of a rule seems to have worked against it, as the grammar contamber i non-
modifying rules with often numerous matches in many states. Since in state spém@on,
it is not necessary to find more than one match for each non-modifying r@lach state, we
conjecture that considerable improvement could be gained in this exampiédaoechanism
is put in place that could help to avoid finding redundant matches. Onibfmosslution for this
will be alluded to in Sectiof.

Overall, it can be inferred thaEeTE is ideal for cases in which the size of the rules’ LHS or
the start graph is relatively large but the effects of the rules are smalbaald asrReTE does not
re-find matches that remain intact after a rule application. This is easilywaukierthePetri Net
example in which the host graph is large and the rule makes small local chtarige move the
tokens without changing the structure of the Petri Net. This is why the timeegjagbn rete-dfs
and the other two strategies has widened as the size of the Petri Net heabeutr

6 Conclusion and futurework

We proposed an adapted version atere-based incremental pattern matching algorithm that
could accommodate the special features and requiremeatsafVvE As our main contribution,
we used this incremental pattern matching algorithm in exhaustive state sgdoegon. To
harness the full potential ®ETE we proposed the rete-dfs exploration strategy. The comparison
of our proposed strategy with both DFS and BFS which use search ptavedhthat under
common execution configurations rete-dfs outperforms other existingggai@specially with
larger start graphs) in most of the examples, and that in some of those lesghgwgap between
rete-dfs and the other two can be narrowed only under very spedahtitances with an unusual
abundance of resources (e.g. 48GB of memory), while in cases wiesheshgraph is large and
the effects of the rules are local, this gap will only widen further as the dideeostart graph
increases irrespective of how much memory is made available to the strategies.

In our agenda for future work, first and foremost is the adding opettdor some of the more
advanced features IBROOVE, e.g. mergers, regular expressions and attributes. Furthermore,
possible optimizations of the structure ®ETE need to be more thoroughly investigated. Cur-
rently, the network is built in an ad-hoc way, leaving a lot of room for fertbptimization as
the order in which the rules and their edges are processed during thepbtadie can affect the
efficiency of theRETE network both in terms of speed and memory. Another improvement to the
RETEimplementation, currently under way, is the incorporation of a demand-Ipsspegation
of updates through thReTE network, in which updates are only propagated downwards when-

11/12 Volume 32 (2010)

Incremental Pattern Matching in Graph-Based State Space Exploration Eﬁ

ever a condition checker node really needs a new match. Another clfigrttoer optimization
of the exploration strategy is that sometimes during backtracking, the sizedatei§) to be

performed on the network can be very large; so much so that it mightiooedly be less costly
if the RETE states are stored in their entirety at all or some of the states.

Bibliography

[BGTO1]

[BORT08]

[For82]

[FUJO6]
[GBG+06]

[Han96]

[HVVO07]

[KKOS]

[Ren04a]

[Ren04b]

[RKO9]

[TB94]

[VB07]

H. Bunke, T. Glauser, T.-H. Tran. An Efficient Implemtation of Graph Grammars Based
on the RETE Matching Algorithm. IfProceedings of the 4th International Workshop on
Graph-Grammars and Their Application to Computer Sciefge 174—-189. Springer-Verlag,
London, UK, 1991.

G. Bergmann, AOkrds, . Rath, D. Varp, G. Varp. Incremental pattern matching in the-
ATRA model transformation system. GRaMoT '08: Proceedings of the third international
workshop on Graph and model transformatioRp. 25—-32. ACM, NY, USA, 2008.

C. Forgy. RETE, a fast algorithm for the many pattenmany object pattern match problem.
Artificial Intelligence19:17-37, 1982.

TheruJasa Toolsuite. 2006. Homepagattp://www.fujaba.de

R. Geil3, G. V. Batz, D. Grund, S. Hack, A. SzalkowskR@&EN: A Fast SPO-Based Graph
Rewriting Tool. In Corradini et al. (edsIpternational Conference on Graph Transformations
(ICGT). LNCS 4178, pp. 383-397. Springer, 2006.

Z. Hanalek. Petri Net Models for Manufacturing Systems. In Zalawed.), Proc of the
IEEE Workshop on Real-Time Systems Education, DaytonahBBac 99-105. IEEE Com-
puter Society Press, Los Alamitos, Calif., 1996.

A.Horvath, G. Vard, D. Vari. Generic Search Plans for Matching Advanced Graph Pattern
ECEASST, 2007.

B. Konig, V. Kozioura. Augur 2 — A New Version of a Tool for the Agals of Graph
Transformation Systems. In Bruni and \M@i(eds.),Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 20Q@tlectronic Notes in Theoretical Computer Science 211,
pp. 201-210. 2008.

A. Rensink. Representing First-Order Logic Usangphs. In Ehrig et al. (edsIpternational
Conference on Graph Transformations (ICGINCS 3256, pp. 319-335. Springer Verlag,
2004.

A. Rensink. TherRooVvESimulator: A Tool for State Space Generation. In Pfaltz gfegls.),
Applications of Graph Transformations with Industrial Bednce, (AGTIVE)LNCS 3062,
pp. 479-485. Springer, 2004. Seitp://sourceforge.net/projects/groove

A. Rensink, J.-H. Kuperus. Repotting the geraniumis:nested graph transformation rules.
In Boronat and Heckel (eds.graph transformation and visual modelling techniques (GT-
VMT). Electronic Communications of the EASST 18. EASST, 2009.

G. Taentzer, M. Beyer. Amalgamated graph transfaiona and their use for specifying AGG
an algebraic graph grammar system. In Schneider and Eht#g)(&raph Transformations
in Computer Sciencéecture Notes in Computer Science 776, pp. 380-394. Saridgrlin

/ Heidelberg, 1994.

D. Varr6, A. Balogh. The model transformation language of the VIARRramework.Sci-
ence of Computer Programmir&(3):187—-207, 2007.

Proc. GraBaTs 2010 12712

http://www.fujaba.de
http://sourceforge.net/projects/groove

	Introduction
	Introduction to groove
	RETE basics
	Classic RETE
	Extensions added to rete in groove

	State space exploration
	Linear exploration and random linear exploration
	Exhaustive state space exploration

	Experimental results and evaluation
	Conclusion and future work

