
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Incremental Pattern Matching in Graph-Based State Space Exploration

Amir Hossein Ghamarian, Arash Jalali, Arend Rensink

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Incremental Pattern Matching in Graph-Based State Space
Exploration

Amir Hossein Ghamarian1, Arash Jalali2, Arend Rensink3

1 ghamarian@cs.utwente.nl
3 rensink@cs.utwente.nl

Department of Computer Science,
University of Twente, The Netherlands

2 arash@netstairs.com
NetStairs.com, Inc.

Abstract: Graph pattern matching is among the most costly operations in any graph
transformation system. Incremental pattern matching aims at reducing this costby
incrementally updating, as opposed to totally recalculating, the possible matches
of rules in the graph grammar at each step of the transformation. In this paper
an implementation of one such algorithm is discussed with respect to theGROOVE

toolset, with a special emphasis put on state space exploration. Specifically,we
shall discuss exploration strategies that could better harness the positiveaspects of
incremental pattern matching in order to gain better performance.

Keywords: Graph Transformation, Incremental Pattern Matching, State-space Ex-
ploration

1 Introduction

Graph transformation (GT) applications range from model transformation [GBG+06, FUJ06,
VB07] to software verification [KK08, Ren04b]. Irrespective of its applications, GT consists
mainly of the operations of finding the images of the rules in the host graph, i.e.,matching,
and transforming the host graph according to the rules. One of the major problems of GT in
general is the complexity of the matching operation. Different algorithms havebeen proposed in
the literature as optimized matching algorithms [HVV07, GBG+06, BÖR+08, BGT91]. These
algorithms are mainly based on one of the two approaches ofsearch plan[GBG+06, HVV07] or
incremental matching[BÖR+08, BGT91].

In the search plan approach, a match for a rule is found based on a plan,i.e., a set of primitive
matching operations, custom-made for each rule using a heuristic algorithm. Once the host
graph on which the GT rules are to be applied, is modified by a rule application,the plans must
be employed anew to once again find the matches of all the rules in the newly updated host graph.

Incremental matching, on the other hand, relies on a special data structurebased on all the
rules of the GT system, which is capable of maintaining information about partialand complete
matches of all the rules within the host graph. Any changes made to the host graph are also
applied to this data structure, and the information about partial and total matches is incrementally

1 / 12 Volume 32 (2010)

mailto:ghamarian@cs.utwente.nl
mailto:rensink@cs.utwente.nl
mailto:arash@netstairs.com


Incremental Pattern Matching in Graph-Based State Space Exploration

updated where needed. In this way, all the matches of all rules are always readily available, with
the extra cost of having to keep the network up to date.

Prior work in the GT literature suggests that incremental matching generally outperforms the
search plan approach [BGT91]. In particular, a very efficient and intuitive algorithm for incre-
mental pattern matching is based on the idea ofRETE networks [For82]. However, incremental
matching has only been used in tools that focus on model transformation [BÖR+08]. GROOVE

[Ren04b], on the other hand, is a general purpose graph transformation tool withthe main distin-
guishing capability of generating the entire (finite) state space of a graph transformation system.
The current implementation uses search plans in its matching engine. In this paper, we investi-
gate the use of aRETE-based algorithm inGROOVE, with the hypothesis that, because we actually
apply all rule matches at every state, it should be possible to gain performance at least as much
as for theVIATRA case reported in [BÖR+08]. In addition to extendingRETE to support some
special features ofGROOVErules, in particular the quantified rules described in [Ren04a, RK09],
the main contributions of this paper are as follows:

• It introduces a state space exploration strategy that makes efficient use of RETE as the
matching algorithm.

• It reports experiments showing that the resultingRETE implementation outperforms the
previous search plan-based approach.

The next section explains the basic functionality ofGROOVE. Section3 specifies theRETE ap-
proaches together with our adaptation. Section4 describes state space exploration and proposes
an efficient strategy suitable forRETE. Section5 shows the experimental results. Finally, Sec-
tion 6 discusses directions for future work.

2 Introduction to GROOVE

In this section we briefly provide an overview of theGROOVE tool.

Graphs and rules.
Graphs inGROOVEconsist of nodes and labelled edges. An edge is a binary arrow betweentwo
nodes, or from a node to itself. Node labels can either be node types or flags, which are a special
kind of loop edge. Graphs are transformed by applying rules. A rule consists of: A) A pattern
that must be present in the host graph in order for the rule to be applicable; B) Subpatterns that
must be absent in the host graph in order for the rule to be applicable; C) Elements (nodes and
edges) to be deleted from the graph; D) Elements (nodes and edges) to beadded to the graph;
E) Pairs of nodes that are to be merged. All these elements are combined into asingle graph;
colours and shapes are used to distinguish them.

Figure1 shows a small example. The overall effect of the rule is to search forA- andC-nodes
connected by achild-edge but without aparent-edge to aP-node, and to modify this by removing
thechild-edge and adding aparent-edge to a freshP-node. For instance, the rule can be applied to
the graph on the left hand side of Figure2 in two ways, one of which results in the graph on the
right hand side. (The other application removes the otherchild-edge.)

Quantification.
One of the special features ofGROOVE is the support of universal quantification in rules (see

Proc. GraBaTs 2010 2 / 12



ECEASST

C

P P

A

parentparent

child

Legend:
A Ab Matched and preserved
A Ab Forbidden
A Ab Matched and deleted
A Ab Created

Figure 1: ExampleGROOVErule and legend

A

P

CC

A

child

parent

childchild

(a)Source graph

A

P

C

P

C

A

child

parent

child

parent

(b) Target graph

Figure 2: Example application of the rule in Figure1

[RK09]). A universally quantified (sub)rule is one that will be applied toall subgraphs that
satisfy the relevant application conditions, rather than just a single one as inthe standard case.
Such a rule can itself be much more concise, and also result in a smaller state space, than the
equivalent set of rules that would ordinarily be needed. In fact, quantification can benestedin the
sense that universally quantified rules can contain existential subrules,and vice versa. Among
other things, this makes it possible to formulate powerful application conditions(see [Ren04a]).

State space exploration.
The core functionality ofGROOVE is to recursively apply all rules from a predefined set (the
graph transformation system) to a given start graph, and to all graphs generated by such applica-
tions. This results in astate spaceconsisting of the generated graphs, which is a rich source of
information for further analysis.

In fact, GROOVE offers a choice of the exploration strategy to be used:depth-first full explo-
ration, which also allows on-the-fly LTL model checking;breadth-first full exploration, which
enables finding shortest paths to certain graphs; andlinear, random linear, andconditionalex-
ploration which allow simulation without covering all states, for instance if the state space is too
large. (In other words, for the latter strategies,GROOVEbehaves like other GT tools.)

3 RETE basics

TheRETE algorithm was first proposed by Forgy [For82] as an efficient means of pattern match-
ing in production rule systems, in which the system is expected to apply those rules whose
left-hand side (LHS) has a matching pattern in a given knowledge-base orstate. This original al-
gorithm was meant to be used in text-based expert systems; Bunke et al. generalized and adapted
the idea behind theRETE algorithm to graph grammars [BGT91].

The basic idea behindRETE is that the pattern represented by the LHS of a rule can be grad-
ually broken down into smaller sub-patterns all the way down to the basic elements of a graph

3 / 12 Volume 32 (2010)



Incremental Pattern Matching in Graph-Based State Space Exploration

pattern, i.e. nodes and edges. By applying the same process to all the rulesin a graph gram-
mar, it is possible to construct a network of patterns, starting from simple nodes and edges, to
more complex combinations that ultimately lead to the full pattern of the LHS of the rules. This
network, called theRETE network, is itself a directed acyclic graph.

3.1 Classic RETE

Figure3 shows a simple graph grammar with two rules and its correspondingRETE network. To
avoid confusion, a node in theRETE network is usually referred to as ann-node. As originally
defined in [BGT91], a RETE network consists of the following types of n-node:

Root This is the only node with no incoming edges. This node is in charge of receiving
and passing nodes and edges down the network during runtime, i.e. when matching is being
performed. The root is always succeded by edge-checker and node-checker nodes.

Edge-checkers Edge-checkers pass down the network those edges in the host graph that have
a specific label. Some edge-checkers only accept loop edges while some accept any edge. In
Figure3c there are three edge-checkers under the root, one of which only accepts loop edges
with the label ‘current’.

Node-checkers Node-checkers appear only immediately after the root, but their use inGROOVE

is much more limited as nodes have no labels of their own inGROOVE. A node-checker can there-
fore be present in aRETE network only when the LHS of a rule consists of one or more isolated
nodes.

Subgraph-checkers They combine the matches they receive from the upper n-nodes, also
known asantecedents, and combine them into bigger matches if they overlap on certain nodes.
These are indicated in Figure3c by node equality relations at the bottom of each subgraph-
checker. Subgraph-checkers always have two antecedents, commonly referred to asleft and
right antecedents. Matches received from these antecedents are stored in two memories called
the left and right memories.

Production nodes These nodes represent the LHS of a rule. If a match reaches a production
node, it would mean that it is a valid match for the LHS of that rule. The set of all possible
matches of a production node in the host graph is called itsconflict set.

The classicRETE algorithm for graphs consists of two phases: thestatic constructionand
the dynamicphase. During the static construction phase, theRETE network is built by going
through each rule of the grammar starting with the very basic elements in its LHS, i.e. nodes
and edges. Initially the network consists only of the root. When processingthe first rule in
the grammar, a separate edge-checker is created and added under the root for each edge in the
LHS. The algorithm will then try to combine those edge-checkers into subgraph-checkers. Each
subgraph-checker has a set of node equality relations, which signify the way the left and right
antecedents of the subgraph-checker are connected to each other. This n-node merging process
continues until a single subgraph-checker corresponding to the LHS ofa rule is built. At this
point a production node is added under the subgraph checker. For thesubsequent rules in the
grammar, the algorithm will try as far as possible to reuse the existing n-nodes. For details of the
staticRETE network construction algorithm please refer to [BGT91].

During the dynamic phase, sometimes simply referred to asruntime, theRETE algorithm will
make use of the network to collectively find the conflict sets of all the rules in the grammar. At

Proc. GraBaTs 2010 4 / 12



ECEASST

current

this

this

next

(a) Grammar rule ’hop’

current

next

this

this

(b) Grammar rule ’hopBack’

Production Node
hop

- Subgraph Checker
- n37–next–>n38
- n39–current–>n39
- n40–this–>n41
– n41=n37

- Subgraph Checker
- n37–next–>n38
- n39–current–>n39
- n40–this–>n41
– n40=n39

- Subgraph Checker
- n39–current–>n39
- n40–this–>n41
– n40=n39

Edge Checker
n40–this–>n41

Edge Checker
n37–next–>n38

Edge Checker
n39–current–>n39

- Subgraph Checker
- n37–next–>n38
- n40–this–>n41
– n38=n41

ROOT

Production Node
hopBack

receive receive

receive

receive

receive

receive

receive

receive

receive

receive
receive

receive

receive

(c) Rete Network for ’hop’ and ’hopBack’

Figure 3: Two rules and their associatedRETE network

the very beginning of the dynamic phase, theRETEnetwork is initialized by feeding all the edges
and nodes of the host graph into the root node. The root node will passdown what it receives
to its node- and edge-checker successors, and they in turn pass downlegitimate matches to their
subgraph-checker successors. The subgraph-checkers try to combine the partial matches they
receive from their left and right antecedents if possible, and will pass the combined matches
down to their own successors. This process continues until all the edgesand nodes of the host
graph are propagated through theRETE network. The matches that end up in the memories of
production nodes will constitute the conflict set of the corresponding rule. The contents of all
the memories of n-nodes collectively define thestateof theRETE network.

TheRETEstate should be updated after a rule is applied to reflect the changes made to the host
graph by that rule. This is where the incremental nature ofRETE can be seen, as the network is
updated by propagating only those elements that have been deleted or added by the rule’s RHS.

3.2 Extensions added to RETE in GROOVE

RETE has already been implemented in other GT tools such asVIATRA [BÖR+08]. Specific
features in each tool call for changes to the classicRETE algorithm to make pattern matching for
rules that use them possible. Among such features inGROOVEare NACs, quantifiers, and support
for rules with disconnected LHSs. In this section, we shall briefly cover these enhancements.

Quantifiers and nested conditions.
Universal and existential quantifiers inGROOVE have been implemented based on the idea of
nested transformation rules [RK09]. Essentially in this scheme, a graph predicate is repre-
sented by a multi-level nested rule, where each subrule or subcondition is allowed to find its
own matches as if it were an autonomous rule. Through a process calledrule amalgamation

5 / 12 Volume 32 (2010)



Incremental Pattern Matching in Graph-Based State Space Exploration

[TB94], the matches of the lower level conditions are collected based on the semantics of the
quantifier at each level to form the overall set of matches for a grammar rule.

TheRETE algorithm has been implemented inGROOVE to accommodate this nested predicate
approach. In other words, theRETE network has been extended inGROOVE to support the idea
of a subcondition rather than a quantifier, leaving the complexities of amalgamation out of the
RETE network data structure. To accomplish this, we have added a new type of n-node to the
RETEnetwork called acondition-checker. A condition-checker is in many ways like a production
node; in fact production nodes are implemented inGROOVE as specialized condition-checkers.
During the static construction phase, the construction algorithm not only iterates through the
grammar’s rules but also through the sub-rules of any complex rule that has one or more levels
of quantification in its LHS. During runtime, theRETE network can therefore be queried for the
conflict set of any (sub)condition at any level. This approach not onlyhelps keep the complexity
of quantifiers and their semantics out of the basic pattern matching algorithm, but it also allows
us to exploit any possible overlap of patterns among subconditions, as no discrimination is made
between subgraph-checkers based on the level of subcondition they are associated with.

Negative application conditions.
In GROOVE, negative application conditions (NACs) are implemented as subconditions. In other
words a rule with both positive and negative parts is represented as an upper level positive rule
together with one or more sub-rules that consist of all the negative nodesand edges. Aroot map
in the NAC specifies the connection points between the negative and the positive subgraphs.

Following this structure, theRETE implementation inGROOVEprovisions for each NAC sub-
condition a specialcomposite condition-checkerthat matches against the positive part of the
main rule connected to the negative part represented by the NAC. Compositecondition-checkers
are constructed in theRETE network in a way that complete positive matches are gradually aug-
mented with the elements of the negative pattern to form composite matches. So a composite
match is prefixed by the positive match that is to beinhibitedby the trailing negative pattern.

Once a composite match is found, the positive prefix of that match is reported tothe positive
condition-checker as an inhibited match. The positive condition-checker keeps a record of the
number of times a positive match is inhibited, and so when it is queried for its conflict set, it will
only return those positive matches whose inhibition counter is zero.

This implementation allows theRETE network to maintain its original simplicity and to pro-
vide the possibility of reuse of subgraph-checkers throughout the network while the prefix struc-
ture allows for rapid determintaion of inhibited matches. In VIATRA [BÖR+08] NACs are im-
plemented using a special type of subgraph-checker, called anegative node, that passes through
only those positive matches that do not join with any negative matches.

Rules with disconnected LHSs.
The originalRETEalgorithm as outlined in [BGT91] assumes that each rule’s LHS is a connected
graph. There, it is suggested that in order to support disconnected left hand sides, one can assume
specialdummy edgesthat bridge between the disjoint components of the LHS.

In GROOVE a slight modification has been made to the algorithm as well as to the structure
of the RETE network so that any production node (or more generally a condition-checker) with
several disconnected components in its LHS has a special type of subgraph-checker as its only
antecedent, called anon-connected subgraph-checker, that receives the matches of all the disjoint

Proc. GraBaTs 2010 6 / 12



ECEASST

components of the LHS and produces all the combinations. Unlike the dummy edge approach,
this scheme remains faithful to the general philosophy of reusing subgraph-checkers.

Domino removal.
For performance reasons, we have implemented the removal updates toRETE like a domino, i.e.
matches are linked together and once a deleted edge match reaches the firstsubgraph-checker,
GROOVE will follow the dependency links between smaller and larger matches and drops them
from the memories they reside in rather than going through the process of overlap-checking and
combining them in each subgraph-checker.

4 State space exploration

Having explained the static and dynamic part of theRETE network, in this section, we first
briefly show howRETE is used in the context of other existing GT tools in linear strategies.
Subsequently, we focus on howRETE can be used to explore the state space exhaustively.

4.1 Linear exploration and random linear exploration

In most GT tools, especially those with a model transformation focus (see [FUJ06, VB07]), it is
only needed to support a linear path through the state space. In other words, at each state, only
one match out of all the matches of all rules is picked and applied to generate the next new state.

In RETE, the state of the network is updated based on the changes made to the host graph as a
result of the application of a rule. This process repeats at each newly generated state. There are
different methods for choosing a match at each state. In linear strategy, the selected match can
be the very first match that is found, or rules can have priorities and the matches of the rules with
higher priorities are chosen first. If this match is selected randomly, the strategy is called random
linear. The overall scheme of this strategy is given in Algorithm(Random) LinearStrategy.

Algorithm (Random) LinearStrategy(G, H)
Input: A Graph GrammarG
Input: Input graphH
1. rete←buildReteNetwork(G)
2. rete.initialize(H)
3. while desirable
4. do (rule, match)←rete.selectAMatch()
5. (∗match corresponds to the rule∗)
6. δ ←applyMatch(rule, match,H)
7. Rete.update(δ )

4.2 Exhaustive state space exploration

There are different strategies for state space generation.GROOVE supports the main two algo-
rithms, i.e., Depth-First Search (DFS) and Breadth-First Search (BFS). As explained in the linear
strategy, theRETE network must be initialized in the beginning of the strategy, and as changes
occur to the host graph, theRETE state also needs to be updated accordingly. The number of
RETE updates as well as the size of updates (number of elements added and removed from the

7 / 12 Volume 32 (2010)



Incremental Pattern Matching in Graph-Based State Space Exploration

�

� �

� �

� �

�

�

� �

�

� �

	

�
 ��
��

�

(a) An example of DFS
strategy usingRETE.

�

� �

� �
�

���

��

��

��

��

��

��

�

	 

� �� ��

(b) An example of BFS
strategy usingRETE.

�

� �

� �

� �

�

�

�

� �

�

� �

	

�
 ��
��

(c) An example of a
customizedRETE DFS.

Figure 4: Different state space exploration strategies usingRETE

graph) can substantially affect the performance of the exploration strategy. Figure4a and Fig-
ure4b show two sample state spaces traversed using the conventional DFS and BFS strategies
respectively. They also show the order in which theRETE state is updated, if these strategies are
used together withRETE as the matching algorithm.

Circles represent the states and the solid arrows between them represent transitions (rule ap-
plications) between two states. The dashed arrows signify updates performed on theRETE state.
The number on each state is the order in which it is generated. The numbers next to each dashed
line show the order in which theRETE state is updated, which could be more than once.

In Figure4a the exploration starts from state 1, then in the DFS scheme the first match is
selected and applied, consequently the successor state is discovered. The RETE state is updated
according to the changes resulting from the rule application in state 1, which leads to state 2
(dashed arrow 1). The same procedure then repeats until it reaches state 4, where there are
no more successors and the exploration strategy needs to backtrack. The backtrack requires
the matches of state 3 to be found again. In other words, theRETE update 4 is the reverse of
update 3. This time however, the second match must be chosen from theRETE conflict sets,
and this process continues until all states are fully explored. It is importantto note that in every
backtrack, a new (next) match ought to be selected, which implies that a fixedorder among the
matches needs to be maintained withinRETE; a requirement that can be very expensive. It is
also important to note that during each backtrack, theRETE network will inevitably findall the
possible matches at that state, including those that have already investigated.

Figure4b follows the same principle but in a BFS fashion. As can be seen, there are many
duplicateRETE updates, as a state needs to be visited several times.

In order to avoid duplicate updates, as well as to avoid having to keep the conflict sets of the
rules sorted in a fixed order, we propose another strategy which is more suitable for a matching
algorithm likeRETE, in which all matches are readily available at each state. Figure4c shows
this customized strategy, which we callrete-dfs. In this approach, once a state is reached,all
the successor states are generated and stored in a stack. The stack is a global data-structure that
contains the generated but not yet fully-explored states. The next stateto be explored is thus the
state at top. This will cause the rest of the exploration strategy to continue in aDFS fashion.

The rete-dfs algorithm is explained in detail in AlgorithmreteDfsStrategy. TheRETE network

Proc. GraBaTs 2010 8 / 12



ECEASST

is built based on the grammarG, and then gets initialized with the host graphH. The host graph
is added to the stack, and as long as there are states in the stack, thenextprocedure is called.

Algorithm reteDfsStrategy(G, H)
Input: A Graph GrammarG
Input: Input graphH
1. rete←buildReteNetwork(G)
2. rete.initialize(H)
3. stack.push(H)
4. while stack is not empty
5. do next(G, rete)

Algorithm next(G, rete)
Input: A Graph GrammarG
Input: UpdatedRETE staterete
1. atState←stack.top()
2. matchSet←reteState.getMatchSet()
3. for every (rule, match) in matchSet
4. dodo newState←applyMatch(rule, match, atState)
5. stack.push(newState)
6. updateAtState(atState, rete)

In procedurenextall the matches of the current state are queried from the updatedRETE state.
Each rule match is applied according to its corresponding rule and the newly generated states are
added to the stack. ThenupdateAtStateis invoked in order to update theRETE state.

Algorithm updateAtState(atState, rete)
Input: The currently explored stateatState
Input: UpdatedRETE staterete
1. δ ←0
2. if atState6= stack.top()
3. then atState←stack.top()
4. else (∗ no new state is put on stack in the last call tonext∗)
5. repeat
6. δ ←δ+ atState.getFromParentDelta() (∗ getFromParentDelta returns the changes when

going from the parent of atState to atState∗)
7. triedState←atState
8. stack.pop()
9. atState←stack.top()
10. until atState.parent()= triedState.parent()or atState= null
11. if atState6= null
12. then δ ←δ−1

+ atState.getFromParentDelta()
13. rete.update(δ )

If in procedurenext any new state was added to the stack (atState is not equal to the top
of stack), that would mean that the exploration is going forward. In that case,updateAtState
just applies the changes made by the last rule application (δ ) to that state and theRETE state
is updated according toδ . Each state saved on the stack maintains the changes occurred when
moving from its parent to itself; information which is obtained by callinggetFromParentDelta.

However, if during the course of the procedurenext nothing new was added to the stack,
updateAtStatewould start backtracking by removing states from the stack. During backtrack,
updateAtStateaccumulates inδ all the parent-to-child changes of the states taken from the stack.

The backtracking continues untilupdateAtStatereaches a state where forward exploration is
again possible. This happens when the top of the stack is a sibling of (shares a parent with) the
last state popped out of the stack. At this stage the backtracking phase is over and it is time to
apply the accumulated changes stored inδ so far. However, since the changes stored inδ are
from parent to child and we have been travelling in the opposite direction,δ needs to be inverted
first (as indicated byδ−1 in line 12). In addition to the invertedδ , the update to theRETE state

9 / 12 Volume 32 (2010)



Incremental Pattern Matching in Graph-Based State Space Exploration

Grammar States Trans.
32-bit 3GB 64-bit 48GB

Incr. [s] Search Plan [s] Incr. [s] Search Plan [s]
rete-dfs DFS BFS rete-dfs DFS BFS

append1 10535 28819 1.9 2.2 1.8 2.1 1.9 2.0
append2 707280 2603238 250.8 - - 53.7 63.0 68.2
carPlat1 110366 369601 9.3 8.7 9.3 11.9 9.9 10.4
carPlat2 2988061 11929077 1859.1 - - 221.5 206.4 209.8

crashCars1 278528 1236992 21.3 27.0 32.6 33.1 41.7 52.1
crashCars2 589824 2768896 242.7 276.9 470.8 66.8 91.4 108.8
petrinet1 2377 4645 2.1 4.4 4.5 2.7 5.1 5.2
petrinet2 23828 47656 29.9 93.5 94.5 36.9 81.7 84.0

Table 1: Exploration strategies’ execution times

should also include one forward step from the shared parent to the siblingfound at the stack top.
It is important to note that theseδ ’s between the states are accumulated and the state ofRETE

gets updated only once. This approach decreases the amount of changes needed to be propagated
throughRETE. Maximum gain is achieved in cases when the changes made by successiverules
cancel each other out, e.g. an edge is added by one transition and removed by another.

5 Experimental results and evaluation

We compared the rete-dfs exploration strategy, which usesRETE as an incremental matching
algorithm, with DFS and BFS strategies, which use search plan for matching. We executed all
of these strategies on four different grammarscar platooning, crashing cars, appendand apetri
net (all available fromGROOVE repository [Ren04b]). Each grammar was run on two different
start graphs.Car platooningwas taken from this year’s GT tool contest, and thecrashing cars
andappendhave been devised by theGROOVE team.Crashing carsmodels a traffic light, and
appendsimulates concurrent invocations of the append method of a list. The Petri Net example
was inspired by the simple production system in [Han96]. These grammars are chosen as they
not only make use of the special features ofGROOVE grammars such as NACs and quantifiers
but they also cover various levels of complexity in terms of the size of the rules’ LHS and the
size of host graph. The experiments were run on a machine with a dual Intel Xeon X5550
2.67GHz processor. Two series of experiments were performed over 32-bit and 64-bit Java
Virtual Machines with 3GB and 48GB of RAM respectively. The results areshown in Table1.

The first column shows the name of the grammar along with a sequence number representing
the size of the start graphs used to run the exploration. The larger the sequence number, the
larger the size of the corresponding start graph. The second and thirdcolumns are the numbers
of states and transitions in the state space, respectively. The next six columns show the execution
times of the three strategies in seconds, over the 32-bit and the 64-bit JVMs. A hyphen (-) in
the execution time means that the experiment did not finish due to an out-of-memory exception.
Please note that the reported time is the whole execution time, and the matching time is a fraction
of this time. To make the total time a more precise indicator of the matching time, isomorphism
checking has been turned off in these experiments.

Proc. GraBaTs 2010 10 / 12



ECEASST

Table 1 shows that as the size of the start graph increases, with the exception of the car
platooningexample, in all the other examples rete-dfs’s speed performance surpasses the other
two strategies, becoming more than three times faster in thePetri Netexample. Speed is however
not the only area where rete-dfs performs better than the other two. In thevery case ofcar
platooningas well asappend2, it is evident thatRETE is more well-behaved in terms of memory
usage than Search Plan, as rete-dfs is the only strategy that has not runof out memory in the
32-bit mode. DFS and BFS have only been able to close in on rete-dfs afterfar more memory
had been made available to them in the 64-bit case.

For the case of thecar platooningexample,RETE’s inherent advantage in finding all the
matches of a rule seems to have worked against it, as the grammar contains a number of non-
modifying rules with often numerous matches in many states. Since in state space exploration,
it is not necessary to find more than one match for each non-modifying rule at each state, we
conjecture that considerable improvement could be gained in this example too,if a mechanism
is put in place that could help to avoid finding redundant matches. One possible solution for this
will be alluded to in Section6.

Overall, it can be inferred thatRETE is ideal for cases in which the size of the rules’ LHS or
the start graph is relatively large but the effects of the rules are small andlocal, asRETE does not
re-find matches that remain intact after a rule application. This is easily observed in thePetri Net
example in which the host graph is large and the rule makes small local changes to it to move the
tokens without changing the structure of the Petri Net. This is why the time gap between rete-dfs
and the other two strategies has widened as the size of the Petri Net had increased.

6 Conclusion and future work

We proposed an adapted version of aRETE-based incremental pattern matching algorithm that
could accommodate the special features and requirements ofGROOVE. As our main contribution,
we used this incremental pattern matching algorithm in exhaustive state space exploration. To
harness the full potential ofRETEwe proposed the rete-dfs exploration strategy. The comparison
of our proposed strategy with both DFS and BFS which use search plan showed that under
common execution configurations rete-dfs outperforms other existing strategies (especially with
larger start graphs) in most of the examples, and that in some of those examples the gap between
rete-dfs and the other two can be narrowed only under very special circumstances with an unusual
abundance of resources (e.g. 48GB of memory), while in cases where the host graph is large and
the effects of the rules are local, this gap will only widen further as the size of the start graph
increases irrespective of how much memory is made available to the strategies.

In our agenda for future work, first and foremost is the adding of support for some of the more
advanced features inGROOVE, e.g. mergers, regular expressions and attributes. Furthermore,
possible optimizations of the structure ofRETE need to be more thoroughly investigated. Cur-
rently, the network is built in an ad-hoc way, leaving a lot of room for further optimization as
the order in which the rules and their edges are processed during the staticphase can affect the
efficiency of theRETEnetwork both in terms of speed and memory. Another improvement to the
RETE implementation, currently under way, is the incorporation of a demand-basedpropagation
of updates through theRETE network, in which updates are only propagated downwards when-

11 / 12 Volume 32 (2010)



Incremental Pattern Matching in Graph-Based State Space Exploration

ever a condition checker node really needs a new match. Another clue forfurther optimization
of the exploration strategy is that sometimes during backtracking, the size of update (δ ) to be
performed on the network can be very large; so much so that it might occasionally be less costly
if the RETE states are stored in their entirety at all or some of the states.

Bibliography

[BGT91] H. Bunke, T. Glauser, T.-H. Tran. An Efficient Implementation of Graph Grammars Based
on the RETE Matching Algorithm. InProceedings of the 4th International Workshop on
Graph-Grammars and Their Application to Computer Science. Pp. 174–189. Springer-Verlag,
London, UK, 1991.

[BÖR+08] G. Bergmann, A.̈Okrös, I. Ŕath, D. Varŕo, G. Varŕo. Incremental pattern matching in theVI -
ATRA model transformation system. InGRaMoT ’08: Proceedings of the third international
workshop on Graph and model transformations. Pp. 25–32. ACM, NY, USA, 2008.

[For82] C. Forgy. RETE, a fast algorithm for the many pattern/ many object pattern match problem.
Artificial Intelligence19:17–37, 1982.

[FUJ06] TheFUJABA Toolsuite. 2006. Homepage:http://www.fujaba.de.

[GBG+06] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. Szalkowski. GRGEN: A Fast SPO-Based Graph
Rewriting Tool. In Corradini et al. (eds.),International Conference on Graph Transformations
(ICGT). LNCS 4178, pp. 383–397. Springer, 2006.

[Han96] Z. Hanźalek. Petri Net Models for Manufacturing Systems. In Zalewski (ed.), Proc of the
IEEE Workshop on Real-Time Systems Education, Daytona Beach. Pp. 99–105. IEEE Com-
puter Society Press, Los Alamitos, Calif., 1996.

[HVV07] Á. Horváth, G. Varŕo, D. Varŕo. Generic Search Plans for Matching Advanced Graph Patterns.
ECEASST6, 2007.

[KK08] B. K önig, V. Kozioura. Augur 2 — A New Version of a Tool for the Analysis of Graph
Transformation Systems. In Bruni and Varró (eds.),Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2006). Electronic Notes in Theoretical Computer Science 211,
pp. 201–210. 2008.

[Ren04a] A. Rensink. Representing First-Order Logic UsingGraphs. In Ehrig et al. (eds.),International
Conference on Graph Transformations (ICGT). LNCS 3256, pp. 319–335. Springer Verlag,
2004.

[Ren04b] A. Rensink. TheGROOVESimulator: A Tool for State Space Generation. In Pfaltz et al. (eds.),
Applications of Graph Transformations with Industrial Relevance, (AGTIVE). LNCS 3062,
pp. 479–485. Springer, 2004. Seehttp://sourceforge.net/projects/groove.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the geraniums:on nested graph transformation rules.
In Boronat and Heckel (eds.),Graph transformation and visual modelling techniques (GT-
VMT). Electronic Communications of the EASST 18. EASST, 2009.

[TB94] G. Taentzer, M. Beyer. Amalgamated graph transformations and their use for specifying AGG
an algebraic graph grammar system. In Schneider and Ehrig (eds.),Graph Transformations
in Computer Science. Lecture Notes in Computer Science 776, pp. 380–394. Springer Berlin
/ Heidelberg, 1994.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 framework.Sci-
ence of Computer Programming68(3):187–207, 2007.

Proc. GraBaTs 2010 12 / 12

http://www.fujaba.de
http://sourceforge.net/projects/groove

	Introduction
	Introduction to groove
	RETE basics
	Classic RETE
	Extensions added to rete in groove

	State space exploration
	Linear exploration and random linear exploration
	Exhaustive state space exploration

	Experimental results and evaluation
	Conclusion and future work

