
Electronic Communications of the EASST
Volume 31 (2010)

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Second International Workshop on

Visual Formalisms for Patterns
(VFfP 2010)

Towards a Pattern Language for the Design of Collaborative
Interactive Systems

Claudia Iacob, Piero Mussio, Li Zhu and Barbara Rita Barricelli

12 Pages

 ECEASST

2 / 13 Volume 31 (2010)

Towards a Pattern Language for the Design of Collaborative
Interactive Systems

Claudia Iacob, Piero Mussio, Li Zhu and Barbara Rita Barricelli

Department of Computer Science, University of Milan

Abstract: Nowadays, the design of interactive systems addresses diverse communities of
end users, each belonging to a certain culture, having a role in the context/domain and
using a specific digital platform. More than often, they come together and collaborate in
performing their work tasks and need to be supported by virtual interactive systems. This
brings a set of challenges and design problems to be faced by interaction designers
focused on the design of collaborative interactive systems. The present paper focuses on
one approach to overcome these challenges – by making available the knowledge and
wisdom within a team of designers to each and every designer in the team by the
definition of pattern languages, organized as sets of multimedia, multimodal documents
accessible and manageable in the Web. A design pattern language comprises a set of inter-
related design patterns able to address interaction design problems and to allow the
accumulation and use of knowledge within a team of designers. This paper identifies and
describes a set of design patterns addressing the design of collaborative interactive
systems together with the possible relationships among them and the operations made
available to designers for managing and using the patterns.

Keywords: Collaboration, Design patterns, Interaction design, Localization

1 Introduction
Collaborative interactive systems focus on supporting a community of end users - i.e. people
who are not computer science experts, but are supported by software systems in performing
their everyday work activities [4] – to work together in achieving a common goal. The design
of collaborative interactive systems, as all design processes, is a complex creative process
which requires more knowledge than any single person can posses [11]. “The predominant
activity in designing complex systems is that participants teach and instruct each other.” [10]
Therefore, the design of collaborative interactive systems requires the participation of
multidisciplinary stakeholders constituting a design team and bringing the necessary
experiences, skills and knowledge to the design process. The stakeholders becoming designers
in the team need to communicate and collaborate with each other, sharing their common
problems and understanding of the design issues they face. This leads to the need of tools for
sharing, managing and enhancing a common knowledge base, accessible to all the participants
in the design process and which gathers the common knowledge and wisdom within a team of
designers. Making all voices heard and allowing all design problems to be shared enables
social creativity which, as defined by Fischer, “explores computer technologies to help people
work together” [11].
Design patterns are tools to support social creativity providing a way of capturing and sharing
knowledge and wisdom related to design problems arising in the design of interactive systems.

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 3 / 13

Each design pattern is a multimedia document storing “a proven solution to a recurring design
problem” [3]. Moreover, in design, problems are not isolated: they refer to each other, smaller
problems arising in the context of larger ones. Therefore, patterns are not isolated, but linked
according to the relationships among the problems whose solution they document. These links
relate patterns together to form a pattern language [3], a shared repository of a finite number of
problem-solution specifications. A design pattern language can be used for the design of
collaborative interactive systems, accessed and managed by all the members of the team of
designers.

The paper adopts and refines the definition of design pattern proposed in [3] and introduces a
set of inter-related patterns addressing the design of collaborative interactive systems. These
patterns form a pattern language seen as a continually evolving shared repository of
knowledge and wisdom which may be modified and enriched at any time based on the
designers’ experience.

2 Background and Related Work
Patterns and pattern languages were introduced by the architect Alexander in the seventies [1]
as tools for capturing and making available and communicable knowledge and wisdom related
to urban spaces. Alexander conceived urban spaces as artefacts, where “people enjoy living in”
and which “have a certain, timeless ‘Quality without a Name’ that cannot be reduced to a
single dimension” [3]. These environments must provide affordances which support “the
patterns of events that frequently happen there” [1]. Patterns of events that frequently happen
in a space and the relationships among them are not created by the architects themselves, but
emerge by the interaction among their inhabitants and the space itself. Urban spaces are not
designed in insulation but as a system: they refer to each other, smaller spaces being defined in
the context of larger ones. Design becomes a process in which space is differentiated to create
a complex solution. To design urban spaces of the desired quality, Alexander saw the necessity
for architects to explain their views to their clients, to discuss within the architects community
about the reached solutions of design problems and to have a repository of the knowledge and
wisdom created through the design activities performed by the community. This repository
evolves in time, recording new solutions to the (possibly new) problems arising in design
activities.

Alexander conceived multimedia documents to be used by architects: 1) as knowledge and
wisdom repositories about the solutions of often recurring urban design problems, 2) as means
of communication of the solutions among the architect communities and, 3) as communication
means between architects and their clients in the design of urban spaces. He called these
documents “patterns”. Alexander established a precise structure and layout of a design pattern:
each pattern has a name, a descriptive entry, and some cross-references to other design patterns
which support and contextualize the solution described. Each structural section is characterized
by a specific graphical layout. The uniform format of presentation improves the usability of
design patterns, because readers can develop reading patterns [13], adaptable to the different
uses of the documents required by their activities. Design patterns are not independent but they
constitute a network of inter-related documents, the “pattern language”. A pattern language is
a hypertext which organizes good design practices within domain. Alexander did not propose
any formal definition of design patterns and design pattern languages but only informal
guidelines for their development. His proposal is limited to the use of paper based documents

 ECEASST

4 / 13 Volume 31 (2010)

organized in a hypertext fashion. Paper, as communication support, constraints the way of
navigation in the hypertext as well as its update and maintenance, i.e. how the evolution of
design pattern languages occurs.

Alexander’s approach had a wide impact in several domains, including Computer Science and
Human-Computer Interaction (HCI). Software engineering (SE) applied design patterns for
expressing Object-Oriented software design experience. Software engineering patterns address
mainly professional programmers and computer scientists and are not intended to a general
audience. Moreover, the collection of design patterns and the relationships among them are not
complete enough to form a pattern language in the Alexandrian sense [3].

The HCI community was attracted by the Alexander’s approach in two directions. First, HCI
designers adopted the metaphor which maps an interactive system to a space which offers
affordances for humans to develop their activities and to face the variances which can affect
them. Reenskaug coined the term habitable spaces to define these virtual spaces [15].
Secondly, many HCI designers adopted the design pattern and the design pattern language
approach to document and describe “the reasons for design decisions and the experience from
past projects, to create a corporate memory of design knowledge” [3]. Several collections of
design patterns [18, 20] for interface and interaction design are now available on the Web. A
collection of patterns targeted for the design of social interfaces is introduced in [7]. The focus
of these patterns is on the design of systems which support social activities like: broadcasting
and publishing, collecting data, rating, or collaborative editing.

Borchers evolves Alexander’s notions of design pattern and design pattern language while
recognizing the HCI design as a complex process. He adheres to the view that design of
complex processes requires more knowledge than any single person can posses [11].
Therefore, he proposes a user centered approach to HCI design in which stakeholders from the
application domain, HCI and SE collaborate to the design. This leads to the definition of three
pattern languages: one for describing the problems met by stakeholders in the targeted domain,
one for describing the problems in the HCI domain and one for describing the problems met by
stakeholders in SE. These languages facilitate the communication among all the stakeholders
involved in the design. Moreover, Borchers recognizes the importance of formalism as a
support for reasoning and creation of software tools. Therefore, he introduced a graph based
definition for design pattern languages, which he uses for developing a new way of
visualization and access to design patterns and patterns language. However, the definition
underlies the design pattern construction. To be usable by their users, patterns are presented as
multimedia information, including images, sketches and graphical schema and not as formulae.
Design patterns become Web documents (nodes of the graphs) and the pattern language is
presented to users as a browsable map representing the graph and deploying the hyper-textual
structure of the language in a way understandable by all stakeholders in the design team. To
reach this result and exploit the affordances of the Web 2.0, Borchers defines the Pattern
Language Mark-up Language (PLML) [14] for allowing the translation of the definition of a
design pattern into an XML Web document and presents a sample authoring and browsing tool
to work with pattern languages. In this way, three hypertexts become available to the
stakeholders in the design teams, making available concepts from the application domain, the
HCI and SE domains.

Our focus is on the HCI problems in the design of collaborative interactive systems. We adopt
Borchers view, refining and adapting methods and tools to the new domain based on our

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 5 / 13

experiences [5, 6, 19]. We look at collaborative interactive systems as spaces where end users
can develop their collaborative activities and at pattern languages as the repository of
knowledge and wisdom gained by designers so far. In this paper we propose a pattern language
addressing HCI problems and solutions within this context.

3 Pattern Mining in the Design of Collaborative Interactive Systems
Collaborative interactive systems have as goal supporting the collaborative work of end users
working within communities in terms of: a). their reasoning on the problem at hand, and the
knowledge creation and management to support their reasoning, b). their communication and
common understanding through appropriate interaction and c). data sharing among them [9].
There are several issues to be faced in the design of collaborative interactive systems coming
from both the diversity of these end users and the diversity of technology they use.

In order to support the mining of design patterns addressing issues in the design of
collaborative interactive system design, we identify – based on literature review [9, 11, 12] and
on previous design experiences [5, 6, 19] – two dimensions that affect the design process:
activity and context. As activities, we consider reasoning, communication and data sharing.
The contexts identified are cross-domain, intra-domain, cross-culture and cross-platform.
Table 1 summarizes possible issues to be addressed within each class of situations.

 Reasoning Communication Data sharing

Cross-
domain

Support the reasoning,
knowledge creation
and management of
end users working in
different domains

Enable end users working in
different domains to
communicate and reach a
common understanding
through appropriate interaction

Allow the sharing
of data among end
users working in
different domains

Intra-
domain

Support the reasoning,
knowledge creation
and management of
end users working in
the same domain, but
having different roles

Enable end users working in
the same domain, but having
different roles to communicate
and reach a common
understanding through
appropriate interaction

Allow the sharing
of data among end
users working in
the same domain,
but having
different roles

Cross-
culture

Support the reasoning,
knowledge creation
and management of
end users belonging to
different cultures

Enable end users belonging to
different cultures to
communicate and reach a
common understanding
through appropriate interaction

Allow the sharing
of data among end
users belonging to
different cultures

Cross-
platform

Support the reasoning,
knowledge creation
and management of
end users who use
different platforms

Enable end users who use
different platforms to
communicate and reach a
common understanding
through appropriate interaction

Allow the sharing
of data among end
users using
different platforms

Table 1 – HCI issues in the design of collaborative interactive systems

 ECEASST

6 / 13 Volume 31 (2010)

To this, two software engineering related concerns can be added. On one hand, guaranteeing a
consistency among the different instances of the same system; on the other hand, facilitating
the maintenance and reuse of these systems.

3.1 Design Pattern and Pattern Language Definitions

Several different templates for defining design patterns have been proposed. These templates
generally include the name of the design pattern, the description of the problem it addresses
together with the forces that influence this problem, some examples of situations in which this
problem can be met and a possible solution to tackle the problem [8].

Borchers [3] proposed a first definition of the template. This definition is refined in:

P = (id, n, pb, F, E, d, K, s, R, IN, OUT)

The description of these elements is defined below:

• The identifier, id is a string of characters that uniquely identifies a pattern and which
respects the following regular expression format: Pn, where n .

• The name, n of the pattern is a string of characters which helps refer to the central idea
of the pattern.

• The problem, pb is multimedia, multimodal description of the major issue the pattern
is trying to solve. It may embed textual, graphical, audio and video content.

• The set of forces, F = {f1, …, fi} is a set of multimedia, multimodal descriptions which
present the implications of the problem addressed by the pattern. The forces are
defined as the cognitive, social or economical related issues which influence the
problem described by the pattern [3].

• The set of examples, E = {ei, …, ej} presents the multimedia description of a set of
existing situations in which the problem described by the pattern arises.

• The diagram, d is a graphical illustration of the pattern.

• The set of keywords, K = {k 1, …, kt} is introduced to list the keywords (strings of
characters) associated to the pattern, which may be either part of an existing glossary
or new (with respect to the glossary) concepts related to the patterns. In this way, the
keywords are the kernel for the creation of a glossary to be used for indexing and
managing the pattern’s description elements.

• The solution, s is the multimedia description of a possible method or process for
solving the problem addressed by the pattern.

• The references, R = {r1, …, ru} set is a set of literature references related to the
pattern.

We refine Borchers definition by making explicit three defining elements: K, IN, OUT.
Moreover, we embed the definition of the “illustration” element from [3] in the definition of
the elements p and IN.

Patterns are inter-related, allowing the definition of problems ranging on a scale of complexity
– more general patterns may point to more specialized patterns. Possible relationships between
patterns are: IS-A, HAS-A, RELATED-TO. Hence, two additional defining elements are
identified for a design pattern:

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 7 / 13

• The input, IN = {in 1, …, ina} is the set of ids of the design patterns which define a
context, i.e. the design situations in which the pattern can be used.

• The output, OUT = {out1, …, outb} is the set of ids of the design patterns which define
the design situations that refine the one in which the pattern is used.

A pattern language comprises a set of inter-related design patterns and it is a directed acyclic
graph PL = {Ω, ∆}, where Ω = {P1,..., Pn} is a finite set of nodes representing design patterns
and ∆ = {R1,…, Rm} is the finite set of edges representing the relationships among the
patterns. P1 Ω is said to point to P2 Ω, hence a relationship between P1 and P2 can be
identified, if and only if there is a directed edge Rk ∆, leading from P1 to P2. In this case, P1
IN of P2 (i.e. P1 belongs to the input set of P2) and P2 OUT of P1 (i.e. P2 belongs to the output
set of P1).

Each design pattern may be described with the help of a specialized XML-based language –
PLML [14]. PLML supports the definition of inter-related design patterns, hence providing
means of representation of pattern languages as directed acyclic graphs, which can be viewed,
browsed and managed accordingly.

3.2 Patterns for the Design of Collaborative Interactive Systems

In what follows, the paper provides the brief description of a subset of the design patterns
derived from previous collaborative design experiences [5, 6, 19] and which are part of an
initial and under development design pattern language addressing communities of interaction
designers, focused on designing collaborative interactive systems. The description of the top
design pattern is complete. The descriptions of the other design patterns omit (due to space
limitations) the forces, the set of references (available in Section 6), and the sets IN and OUT
(illustrated in Figure 1).

P1: Enable Collaboration.
Problem. The growing complexity of design problems [2] and the expanding scale of design
projects are moving beyond individual human capability and thus need multidisciplinary end
users, owners of the problems and developers, to collaborate in order to solve them [5, 10].
Forces. The set of forces are described by: i).the challenge to provide all the end users with
virtual tools, which are able to support them in their work and collaboration and ii).
communication gaps arise in the collaborative design process, since end users with different
cultural and contextual backgrounds use different systems of signs, languages and
representations and may have different perceptions as well as different interpretations, even for
the same images [5].
Examples. This problem is faced in the design of a system to support a community of
mechanical engineers who come together and collaborate in the validation of an artifact [19].
In their collaboration, they use virtual tools which allow them to annotate domain documents.
These annotations respect a formal, technical definition, developed over the years on the basis
of the engineers’ experience.
Another example is the design of a system to support the collaboration of a team of physicians
in establishing a diagnosis [5]. Physicians with different roles (neurologists and radiologists)

 ECEASST

8 / 13 Volume 31 (2010)

collaborate in performing diagnostic activities on the basis of annotating (through virtual tools)
the medical records they are reasoning on.
Diagram.

Keywords. K= {‘enable collaboration’, ‘diversity’, ‘design for collaboration’}.
Solution. The solution is to provide each of the end users involved in the collaboration with an
instance of the system tailored to his/her own needs and background. The instance allows each
end user to reason in his/her own system of signs and to use his/her preferred digital platform
in the interaction with the system. The system is, therefore, localizable to the user’s domain,
role and culture and to the platform in use. A shared knowledge base is made available to all
the end users involved in the collaboration, to support a common ground of communication
and understanding. The activity of managing the knowledge base is the annotation, which
allows end users to update it by adding comments next to data in order to highlight its meaning
[6].
In. IN = . This is an empty set since it is associated to the top level pattern.
Out. OUT = {“Cross-domain collaboration”, “ Intra-domain collaboration”, “ Cross-culture
collaboration”, “ Cross-platform collaboration”, “ Guarantee consistency”, “ Facilitate
maintenance and reuse”}.

P2: Cross-domain Collaboration.
Problem. End users working in different domains and using different systems of signs and
notations need to collaborate in their everyday work and must be supported by virtual tools
which enable their collaboration. In their collaboration, they bring together different expertise
for the common goal of solving a problem.
Examples. A possible example of such situation is the design of a system to support architects
or civil engineers who need to collaborate in the sketch of a blueprint. They use virtual tools
able to support their communication, collaboration and information sharing.
Keywords. K = {‘cross-domain collaboration’, ‘different domains’, ‘cross-domain reasoning’}.

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 9 / 13

Solution. Designing systems which support cross-domain collaboration asks for providing each
end user with an instance of a system localized to his/her domain and for an overall design
model able to enable the communication among domain dependent systems. The common
ground for cross domain communication consists of a boundary/bridge object language formed
of inter-related boundary objects. Boundary objects are artifacts and can be utilized to support
cross domain collaboration since they are adaptable to serve different domains’ needs and
maintain their common identities during the collaboration processes [17]. Boundary objects
may be used by end users to interact with each other, reason on each other’s work and
exchange them.

P3: Intra-domain Collaboration.
Problem. End users working in the same domain, but having different roles and backgrounds
need to collaborate in their everyday work and must be supported by virtual tools which enable
their collaboration, communication and information sharing.
Examples. The design of a system to enhance the collaboration of a neurologist and a
radiologist [5] in reaching a common diagnostic is an example of situation where the problem
described above arises. They both belong to the same domain, but use different tools and ways
of reasoning.
Keywords. K = {‘intra-domain collaboration’, ‘different roles’}.
Solution. Designing systems to enhance intra-domain collaboration asks for providing each
end user with an instance of a system localized to his/her role in the domain. We argue that
specific role dependent tools should be provided for each end user. Moreover, end users
belonging to the same domain should be supported in managing a common knowledge base
associated to the domain. The communication among end users with various roles is made on
the basis of the common knowledge base and by exchanging domain specific boundary
objects.

P4: Cross-culture Collaboration.
Problem. End users belonging to different cultures, speaking different languages and using
different systems of signs need to be supported in their collaborative work by virtual tools
which enable their communication and common reasoning. The same system should address
end users of different cultures, allowing them to come together, understand each other, share
information and collaborate.
Examples. An example in this respect is the design of a system for a community of tourists
which belong to different cultures and collaborate in the creation of a shared knowledge base
related to a geographical region. They use virtual tools which allow them to communicate and
share their feedback on their visits and, in this way, enrich the knowledge base.
Keywords. K = {‘cross-culture collaboration’, ‘different languages’, ‘system of signs’}.
Solution. Designing systems which support and enhance cross-culture collaboration asks for
allowing each end user to interact with an instance of a system localized to his/her culture in
terms of language and system of signs. The design of such localized systems requires the

 ECEASST

10 / 13 Volume 31 (2010)

definition of a level of abstraction meant to decouple the culture-related properties of the
system, allowing their specification by means of specialized languages and tools.

P5: Cross-platform Collaboration.
Problem. End users use different digital platform in interacting with virtual systems which
support them in their work. They communicate, collaborate and share information through
collaborative systems which may be materialized on different types of platforms.
Examples. An example of such a case is the design of a system to support the collaboration of
end users using both laptops and mobile devices in their interaction with the same system.
Keywords. K = {‘cross-platform’, ‘materialization’}.
Solution. Materializing a specific system on a set of different platforms asks for a level of
abstraction which decouples the technical details characterizing the platform and the
specification of how these details affect the materialization of the system on that platform.
Specialized languages and tools capture information like the platform’s display characteristics,
the memory specification, the description of the input and output devices. Moreover,
information related to the way the content and the behavior of the system are rendered on each
platform must be described independently.

4 Towards a Pattern Language
The identification of a set of inter-related design patterns leads to the definition of a pattern
language.

Figure 1 depicts an overall definition of the proposed pattern language addressing the design of
collaborative interactive systems. The top level design pattern (“Enable collaboration”) is
refined into the 6 design patterns (“Cross-domain collaboration”, “ Intra-domain
collaboration”, “ Cross-culture collaboration”, “ Cross-platform collaboration”, “ Guarantee
consistency”, “ Facilitate maintenance and reuse”), a subset of which is described in Section 3.
Each of these patterns can be further on refined into smaller granularity design patterns. The
lower level patterns represented in Figure 1 are classified according to the activity dimension
defined in Section 3 (reasoning, communication, data sharing).

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 11 / 13

Figure 1 – A pattern language for the design of collaborative interactive systems

The representation of all the relationships identified among the design patterns leads to a graph
representation in which each node may point to a set of other nodes (set OUT) and in which a
set of nodes may point to a specific node (set IN).

4.1 The Pattern Language in Use

The use of the pattern language described above is dedicated to teams of designers focused on
the design of collaborative interactive systems. The initial set of design patterns is meant to
provide a skeleton to support further creation of patterns. Based on their on-the-go experience,
designers contribute to the pattern language, sharing their knowledge and wisdom. In this way,
they not only make use of the solutions provided by other members of their team, but are also
able to propose new solutions to existing problems or new problems with their associated
solutions.

The management of the pattern language is supported by the definition of each design pattern,
offering a template to support understanding and usage. Several operations are made available
to the designers, like:
i). searching for design patterns, operation which is supported by the use of the set of
keywords. Searching is needed when, faced with a design problem, a designer is interested in
the solutions provided by its community. The keywords associated to each design pattern form
a glossary of terms, based on which the search is being performed.
ii). browsing through the pattern language, which is allowed by the graph representation of the
patterns and their relationships. PLML supports the design patterns representation as nodes of
a graph in which the edges are the representation of the relationships among the patterns.

 ECEASST

12 / 13 Volume 31 (2010)

Browsing is highly facilitated by such a representation, helping designers get an overview of
the design patterns available and the way they are related.
iii). modifying existing design patterns or annotating their description. The definition of a
design pattern is comprised within a document which can be easily modified according to the
designers’ experience. Moreover, the content describing each design pattern can be annotated
as answer to any misunderstandings or clarification requests within the community.
Annotations support open discussions within the community, allowing each designer to leave
his/her feedback on any edge and/or node of the graph associated with the pattern language.
iv). creating new design patterns by providing the elements of the description listed above. At
each step, any designer may create a new design pattern according to his/her experience by
filling in the description of the design pattern and by relating it to other already existing
patterns.

5 Conclusions
Communities of interaction designers focusing on the design of collaborative interactive
systems face a set of challenges and open issues coming from the diversity of users and
technology. As answer to making designers’ knowledge and wisdom available within the
community they belong to, a design pattern approach is proposed. The paper identifies a set of
design patterns, part of an under development pattern language, which answer the top level
issues in the design of collaborative interactive systems. The extension of the pattern language
follows an iterative approach in that at any time, new design patterns can be added to the
language and linked to already existing patterns. As future work, we are focusing on the
development of authoring and browsing tools which allow designers and end users to
participate to the creation, management and sharing of a design pattern knowledge base. These
tools are based on annotation, annotation indexing, knowledge base organization, and
browsing support.

6 Acknowledgements
The work of Claudia Iacob and Li Zhu was supported by the Initial Training Network "Marie
Curie Actions", funded by the FP 7 – People Programme with reference PITN-GA-2008-
215446 entitled "DESIRE: Creative Design for Innovation in Science and Technology”.

7 References
[1] Alexander, C. 1977. A pattern language: Towns, buildings, construction. New York:
Oxford University Press.
[2] Arias, E., Eden, H., Fischer, G., Gorman, A., Scharff, E. 2000. Transcending the individual
human mind—creating shared understanding through collaborative design. ACM Trans.
Comput.-Hum. Interact. 7, 1 (Mar. 2000), 84-113.
[3] Borchers, J. 2001. A Pattern Approach to Interaction Design. John Wiley & Sons, Inc.
[4] Brancheau, J. C., Brown, C. V. 1993. The management of end user computing: status and
directions. ACM Comput. Surv. 25, 4 (Dec. 1993), 437-482.
[5] Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. 2007. Visual Interactive Systems for
End user Development: a Model-based Design Methodology, IEEE Transactions on Systems
Man and Cybernetics 37, 6 (2007), 1029 – 1046.

 Towards a Pattern Language for the Design of Collaborative Interactive Systems

Proc. VFfP 2010 13 / 13

[6] Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A. 2006. End user Development: The
Software Shaping Workshop Approach. In Lieberman, H., Paternò, F., & Wulf, V. (Eds.): End
user Development, pp. 183-205. Dodrecht: Springer.
[7] Crumlish, C., Malone, E. 2009. Designing Social Interfaces. O'Reilly Media, Inc.
[8] Díaz, P., Rosson, M. B., Aedo, I., and Carroll, J. M. 2009. Web Design Patterns:
Investigating User Goals and Browsing Strategies. In Proc.of the International Symposium on
End user Development (Siegen, Germany, March 02 - 04, 2009). V. Pipek, M. B. Rosson, B.
Ruyter, and V. Wulf, Eds. Lecture Notes In Computer Science, vol. 5435. Springer-Verlag,
Berlin, Heidelberg, 186-204.
[9] Ellis, C. A., Gibbs, S. J., and Rein, G. 1991. Groupware: some issues and experiences.
Commun. ACM 34, 1 (Jan. 1991), 39-58.
[10] Fischer, G., 2000. Social Creativity, Symmetry of Ignorance and Meta-design.
Knowledge-Based Systems Journal, Vol. 13, No. 7–8, pp. 527-37.
[11] Fischer, G. 2004. Social creativity: turning barriers into opportunities for collaborative
design. In Proc. of the PDC’04, Toronto, Canada, July 27 - 31, 2004, ACM, New York, NY,
152-161.
[12] Guerrero, L.A., Fuller, D.A. 2001. A pattern system for the development of collaborative
applications. Information and Software Technology, 43(7), 457-467.
[13] Hornbæk, K. and Frøkjær, E. 2003. Reading patterns and usability in visualizations of
electronic documents. ACM Trans. Comput.-Hum. Interact. 10, 2 (Jun. 2003), 119-149.
[14] http://www.cs.kent.ac.uk/people/staff/saf/patterns/diethelm/plmlx_doc/index.html
[15] Reenskaug, T.M.H. 2003. The model-view-controller (MVC) - its past and present. 2003.
JavaZONE, Oslo.
[16] Snow, C. P., 1959. The Two Cultures and the Scientific Revolution, Cambridge
University Press, Cambridge.
[17] Star, S. L. and Griesemer, J. R., 1989. Translations’ and Boundary Objects: Amateurs and
Professionals in Berkley’s Museum of Vertebrate Zoology, 1907-39, Social Studies of Science,
Vol. 19, No. 3, pp. 387-420.
[18] Tidwell, J. 2005. Designing Interfaces: Patterns for Effective Interaction Design. O'Reilly
Media
[19] Valtolina, S., Mussio, P., Barricelli, B. R., Bordegoni, M., Ferrise, F., Ambrogio, M.
2009. Distributed knowledge creation, recording and improvement in collaborative design. In
Proc. of KES IIMSS ‘09. E. Damiani et al. (Eds.), SCI 226, Springer-Verlag, New York, 31-41.

[20] Welie, M. Patterns in interaction design. Retrieved: June, 20th 2010. Available at:
http://www.welie.com

