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Abstract: OCL is widely used by UML and other languages to constrain meta-
models and perform evaluations on models. The OCL specification is the result of
diligent but time-constrained human endeavor and so contains many inconsisten-
cies, most of which are relatively easy to ignore as obvious typographical mistakes.
However the need to ignore minor discrepancies undermines rigorous treatment of
more significant issues. The minor issues can be substantially eliminated by auto-
generating the specification. This paper provides early community visibility of pro-
posed solutions to a variety of issues that arose while developing a model for the
OCL Standard Library that forms the core of the OCL specification.
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1 Introduction

The Object Constraint Language (OCL) provides the foundation for advanced structural behav-
ioral modeling in the suite of Object Management Group (OMG) specifications related to the the
Unified Modeling Language (UML). OCL was split off from UML as part of the UML 2.0[Obji]
revision activities recognizing that OCL was useful in non-UML contexts. This has been demon-
strated by the reuse as the basis for QVT 1.0[Objh].

Unfortunately the UML Revision Task Force (RTF) had insufficient resources to complete the
revision of OCL 1.6[Objb] to align with UML 2.0 and so a partially revised OCL 2.0 draft[Objc]
was all that was available to accompany UML 2.0. The QVT Finalization Task Force also final-
ized the OCL 2.0 specification, but had insufficient resources to perform the very detailed proof
reading and consistency checking for a specification involving so many cross-references.

The OCL 2.2[Objd] revision addressed a relatively small proportion of the outstanding issues.
The OCL 2.3[Obje] revision addressed a substantial inconsistency that arose when an ‘un-

defined’ value evolved to a null or invalid value and a major under-specification of the
concrete syntaxes of terminals. However the bulk of the inconsistencies remained.

Ongoing work by the OCL RTF is trying to remedy the deficiencies. The current manual
editing approaches have resulted in literally thousands of mistakes, which arose through lack of
tool checking, incomplete specification and partial evolution.

We are responsible for all the changes between OCL 2.2 and OCL 2.3 and are a little disap-
pointed by the number of changes that are incomplete or inaccurate despite considerable time
and effort. The specification is just too complex for manual maintenance.
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1.1 Revision

The Object Management Group revision process for these specifications starts when an issue
is raised against a specification; anyone can raise an issue. Each issue should be addressed by
a Revision Task Force leading to a No-Change, Duplicate, Merged or Resolved response. In
practice many issues have been Deferred through lack of time. Each issue that requires a change
requires a written proposal to be prepared in which the issue is discussed and the associated
editorial changes are clearly identified. Proposals are voted on by the Revision Task Force and in
due course a revised specification is prepared, approved by the Architecture Board and ultimately
adopted by the OMG.

An attempt was made to pursue this process to resolve the incomplete change in alignment
between UML 1.x’s AssociationEnd and UML 2.x’s Property class. The detailed changes proved
very laborious. There must be a better way. Now that good modeling technology tools are readily
available, it is an anachronism that the OCL specification that underpins so many of the tools is
maintained manually.

It was therefore decided to exploit models to capture as much of the specification as practical
and then to auto-generate the specification from the models. Auto-generation should then en-
sure that typographic errors in technical content are almost non-existent, and should enable the
detailed lists of editorial changes required by the OMG process to be auto-generated as well.

1.2 Models

The Essential OCL can be modeled using 5 models:

• the UML meta-model (UML Infrastructure)

• an OCL Standard Library Model (OCL Clause 11)

• an Abstract Syntax Meta-Model (OCL Clause 8)

• a Concrete Syntax to Abstract Syntax Mapping (OCL Clause 9)

• a Run-time Semantics Model (OCL Clause 10)

Complete OCL requires similar smaller models to flesh out Clause 12.
The models above are interdependent, with UML and OCL heavily reliant on OCL expres-

sions, whose operators are defined by the OCL Standard Library. The OCL Standard Library
has limited dependencies on the Abstract Syntax and Run-time Semantics, so defining the OCL
Standard Library and consequently expression validity is the key to modeling the whole OCL
specification.

Each version of an OCL 2.x specification states, in its Scope statement, that it is aligned with
a corresponding UML 2.x specification. Sadly this statement is only an aspiration at present.
Nonetheless we must proceed towards that goal and so clearly an OCL Standard Library Model
should be describable by UML.
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1.3 Paper

In this paper we discuss many of the issues that have arisen in building a UML-aligned meta-
model for the OCL Standard Library and using that meta-model to define the Library. In a
companion paper[Wil] we discuss issues arising from attempting to achieve UML-alignment
more generally and establish the meaning of an OCL model as a combined instance of the merged
UML and OCL meta-models.

It is hoped that by presenting the community with an early insight into changes that may be
proposed for OCL 2.4, the community may be able to contribute constructively before, rather
than after, the revised specification is adopted.

A prototype of the modeled OCL Standard Library may be found in the optional Examples
and Editors of the Indigo release of Eclipse OCL[MDT]. This is officially released in June
2011. Milestone builds have been available since December 2010. The prototype defines a
Domain Specific Language to specify the OCL Standard Library, and uses Xtext[TMF] tooling
to provide a rich editing capability for the DSL. This facilitates entry of OCL postconditions on
library operations and validates that these postconditions are consistent with the library model.

The clarifications outlined below involve very few, if any, actual changes to the user percep-
tion of OCL; the changes are intended to just make the specification say what many users think
it already says. Of course OCL implementations that have resolved ambiguities in alternative
directions may see a change. However even changes in the specification need not impact com-
patibility, since with substantial parts of the OCL semantics migrating to the library model, it
may be possible to encapsulate the semantics of a particular OCL tool version in a correspond-
ing OCL Standard Library model and so preserve precisely those semantics for those users that
require them.

In Section 2 we discuss the basic properties of a library model, then in Section 3 we show how
a variety of OCL concepts can be captured by the library model. With a modeling capability
established, in Section 4 we identify aspects of the library that deserve revision and in Section
5 we examine a number of operations that are difficult to model. Further minor revisions to
enhance modeling are considered in Section 6. Finally we conclude.

2 Library Utility

We start by identifying ways in which an OCL model of the OCL Standard Library can be useful.

2.1 Consumable

While auto-generation of the OCL specification may be a primary motivation for modeling the
OCL Standard Library, provision of a consumable machine readable model is equally valuable.
It avoids the need for OCL implementors to transcribe the specification, avoids associated tran-
scription errors, and so avoids inconsistencies between alternate implementations. Availability of
a library model should encourage tools to reuse the modeled declarations rather than hard-code
many inconsistent implementations.

Definition of the library requires concepts that cannot be expressed in Essential OCL or Com-
plete OCL Concrete Syntax, and so a Domain Specific Language with a new Concrete Syntax is
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Figure 1: Simple Library Concrete Syntax Example.

used to define library elements. The library shares the same Pivot Model Abstract Syntax as Es-
sential OCL and Complete OCL. A simple example of part of the Integer definition is shown
in Figure 1.

The Integer type is defined to conform to the Real type and to be an instance of the
PrimitiveType meta-type.

Four operations are defined, the first with a precedence labeled as UNARY, and the second with
a precedence labeled as ADDITIVE. Precedence is discussed in Section 3.1.

The first operation is unary minus. It takes no arguments and returns an Integer. It has a
precedence and so may be used as a prefix operator.

The second operation is binary plus. It takes an Integer argument and returns an Integer. It has
a precedence and so may be used as an infix operator.

The third and fourth operations have simple names that do not require quotes; they have as-
sociated preconditions and postconditions expressed in OCL. These are verified by the editor
tooling.
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Figure 2: OrderedSet::indexOf with error.

Figure 3: Implementation Example.

(The model reproduces the OCL 2.3 specification and so some constraints are missing.)
When applied to OrderedSet::indexOf, the typo involving i rather than result is

detected as shown in Figure 2. (There are perhaps a hundred similar typos in the specification.)

2.2 Implementable

If the OCL Standard Library is to be used by practical OCL tools, the library model must provide
a body for every operation and iteration. This is difficult for the simplest operations whose body
is just ‘obvious’ and potentially inefficient for more complicated bodies. OCL tools may wish to
provide their own more optimum implementation. The DSL therefore allows an arbitrary string
to be specified for use by the tooling. The usage for Eclipse OCL is shown in Figure 3. The
string identifies the Java class that realizes the defined library feature.

A practical tool-independent OMG distribution might facilitate a simple automated conversion
to tool-specific form by providing unique strings such as org.omg.ocl.lib.Boolean.xor.
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2.3 Auto-generation

In order to support full auto-generation of the specification, all editorial content must be present
in the model. Simplistically, this can be provided by embedding description in preceding com-
ments, as in Figure 1. Providing sufficient richness to capture the limited usage of italics, bullets
and figures currently in the specification is work in progress. A very limited subset of HTML
markup is probably the solution since the Xtext tooling already supports embedded HTML.

Once the full description is present in the model, implementations may present the description
to users in their documentation, help or hover text. Acceleo[M2T], which is the Eclipse imple-
mentation of the OMG MOFM2T[Obja] model-to-text transformation language, is being used to
auto-generate Clause 11, the OCL Standard Library, from its OCL Pivot model.

2.4 Extensible

The term OCL Standard Library is something of a misnomer since the library has evolved in-
compatibly between OCL 2.x releases, and since it is extended by both QVT Operational and
MOFM2T.

It is highly desirable to allow users or third parties to provide extended, alternate or additional
libraries and so foster a growing collaborative community.

The library syntax therefore supports an import statement to allow a library to extend or ex-
ploit other libraries. Packages, types and features with identical hierarchical names (including
parameter types for operations) are merged, provided no conflicts arise. This allows addition but
not removal of

• packages and types to packages

• features, invariants and conformances to types

• preconditions, postconditions, bodies and implementations to operations or iterations

• initializations and derivations to properties

The merge uses the same yet-to-be-defined merge semantics as for Complete OCL.

3 Library Model

The UML-aligned OCL Pivot Meta-Model is discussed in our companion paper[Wil]. In this
section we examine library concepts that require modeling, but for which there is either no UML
or OCL representation, or for which the prevailing OCL representation is inconsistent with UML.

3.1 Precedence and Associativity

The precedence of and, or and xor was changed in the OCL 2.2 specification, so it is desirable
to model precedence in order to allow either OCL 2.0 or 2.2 semantics to be used simply by
selecting a corresponding OCL Standard Library Model. It is also desirable to allow languages
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Figure 4: Top level Import, Library and Precedence Ordering declarations.

that extend OCL freedom to redefine precedence and associativity to whatever is appropriate for
the extended language.

Provision of a precedence label, as in Figure 1, specifies that a no argument operation can also
be used as a prefix operator, and that a single argument operation can be used as an infix operator.
Operators sharing a precedence label are equi-precedence, and precedences are ordered by a
separate precedence ordering statement as shown in Figure 4. In the OCL 2.2 example, AND has
higher precedence than OR so the expression a and b or c and d should be interpreted
as (a and b) or (c and d). Precedences orderings may be extended by merging non-
conflicting orderings from imported libraries.

All operators are left associative in OCL, that is a.b.c is (a.b).c rather than a.(b.c).
The modeling allows right associativity to be specified.

3.2 Conformance

The conformance of Collection upon OclAny was changed in the OCL 2.2 specification, so this
too should be model-able.

The Integer conformsToReal declaration in Figure 1 is syntactically similar to an extends
in Java; it may specify a comma-separated list of types to which a type conforms.

With conformance defined in the model, many conformance statements throughout the OCL
specification can be eliminated as well as some definitions of a conformsTo() helper opera-
tion.

Much of the conformsTo relationship can be captured structurally, provided OCL tooling load-
ing a UML meta-model creates a conformsTo relationship for each generalisation relationship
and adds a conformsTo Classifier relationship for every root class. However operational confor-
mance is still needed to define:

• OclVoid conforms to all types (except OclInvalid).

• Collection conformance requires conformance of collection and element types.

• Tuple conformance requires part name match and type conformance.

3.3 Templates or Generics

UML defines templates which are necessary to define

7 / 20 Volume 44 (2011)



Modeling the OCL Standard Library

Figure 5: Template Concrete Syntax Example.

Figure 6: Template Operation Concrete Syntax Example.

• Collections as classes with a single template parameter

• Tuples which have many named template parameters

• the Collection::product operation which has an operation template parameter

Figure 5 shows an example type template.
Note that this use of templates for library definition purposes does not require OCL to support

templates; it is full alignment of OCL with UML that requires it.
The usage of < > for templates is well-established in many languages such as C++, Java and

even UML. Unfortunately OCL currently uses ( ) to parameterize its Collection and Tuple
types. This suggests that introduction of templates into OCL should use ( ) for compatibility.

Eclipse OCL has successfully used ( ) for templates in prototype tooling. Usage of this
tooling indicates that ( ) are acceptable but a little disconcerting for type templates. But for
operation templates ( ) are very confusing since an operation name may then be followed by
one or two parenthesized clauses. The last clause is always for operation arguments or parame-
ters. The first clause is optional and provides the template parameters or bindings. Eclipse OCL
prototype tooling has therefore switched to using < >. Compatibility is preserved by allowing
( ) following an explicit Collection name or the Tuple keyword.

It therefore seems appropriate for introduction of template functionality to OCL to align with
UML and to use < >. The existing usage of ( ) can be deprecated. < > are used throughout
this paper, except where the template clause is obvious and can be omitted for clarity.

3.4 Collection::product(...)

Examination of the collection product operation reveals that it uses both type and operation
template parameters. These are defined as shown in Figure 6.

The return type demonstrates the construction of a Set of Tuples whose element types are
defined by the type template parameter T and the operation template parameter T2.

This provides an explicit declaration for T and T2, which are currently left to the specification
reader’s intuition.
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Figure 7: Iteration and LoopExp.referredIteration.

Figure 8: Iteration Concrete Syntax Example.

3.5 Iterators and Iterate

The top row of the Figure 7 shows the conventional UML usage of a Class with Operations and
associated Parameters. The new Iteration class models an iterator operation which is similar to
an operation with additional Parameters called iterators. The iterate iteration has a further
Parameter variously called an accumulator or result.

As an extension of Operation, Iterations may be contained by the ownedOperation feature of
a Class and so require no further changes. Introduction of a LoopExp::referredIteration analo-
gous to the existing OperationCallExp::referredOperation eliminates the need for iterations to be
accessed by a vague name lookup at run-time.

Figure 8 shows that iterate and iterator operations can be defined in a very similar fashion to
operations, re-using the semi-colon and vertical bar from the iteration call concrete syntax.

Iterations taking variable numbers of iterators are separately declared for each alternative.

3.6 Lambda Types

The equivalent iterator operation declarations to those in Figure 8 in the OCL specification var-
iously omit the final body argument or resort to textual substitution of the italicized body ex-
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pression within the iterator exposition. The required type signature is defined by commentary
and sometimes well-formedness rules. On closer examination the body expression is clearly an
implicit form of a Lambda Expression.

Following a casual query at the OCL Workshop in 2010, as to whether OCL should support
Lambda Expressions, a discussion on the LinkedIn OCL Users Group[Lin] generally welcomed
their introduction. The declarations in Figure 8 therefore use a Lambda type to specify the con-
straints on the body expression. The syntax of a Lambda type draws on the Tuple and Operation
syntaxes.
Lambda context-type ( parameter-type-list ) : result-type
An ExpressionInOcl is also similar to a Lambda Expression but there is one important differ-

ence. An ExpressionInOcl is self-contained with all variable references terminated by context,
parameter or result variables. An Iteration body has access to the invoking environment, so the
analysis resolves variable references, some of which may be implicit, to the appropriate variables
which are then available for access while the iteration is evaluated.

The signatures provided above use the iterator type as the lambda expression context-type.

4 Library Content

Once an ability to define an OCL Library has been established, some problems with the content
of the OCL Standard Library arise and can be addressed.

4.1 Covariant Operation Overloading

OCL specifies that OCL is aligned with UML, and UML specifies that the semantics of op-
eration overloading is an implementation variation point. This unfortunately means that the
utility of all overloaded operations is unclear in both OCL and UML. OCL must therefore
define an operation overloading semantics. After discussion with a variety of concerned par-
ties, invariant overloading semantics like Java seems appropriate. In Java, all overloads of
Object.equals(Object) must have an Object argument.

For OCL, the most derived unique compatible operation signature can be statically determined
when the OCL expression is parsed. This determination is then persisted as the target of an Op-
erationCallExp::referredOperation in the AST. When evaluated, the dynamic type of the expres-
sion source can be used to select the most derived operation with the same signature. Analysis
of UML 2.4, identified a couple of places where covariant overloading had been assumed; these
usages were not significant and await correction in UML 2.5.

Covariant overloading allows a derived operation argument type to vary with the derived
source type. This practice is widespread in the OCL standard library, where the equality op-
eration OclAny::=(OclAny) is overloaded by Collection::=(Collection).

4.2 OclSelf

The most interesting cases of covariant overloading are not fully covariant, perhaps they could
be called self-variant since the argument has the same type as the context type. We can intro-
duce a pseudo-type OclSelf to express the statically determinate type of the context object and so
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Figure 9: OCL 2.3 Collection Hierarchy.

declare OclAny::=(OclSelf) for which Collection::=(OclSelf) is a correspond-
ing overload. In genera,l covariant overloading requires multiple-dispatch[BG], however since
only one type is involved, the usage degenerates to single dispatch on the common supertype of
context and argument types. We will use OclSelf to solve further problems in Section 5.

4.3 Collection Hierarchy

The OCL 2.3 Collection hierarchy and conformance is shown in Figure 91.
There is limited declaration sharing between the Collection kinds and so when OrderedSet was

introduced, it appears that its definition was cut and pasted from Sequence. Unfortunately not all
operations were reviewed to accommodate uniqueness of content, and insufficient Set operations
were added.

These problems are discussed by Büttner[BGHK] who observes that Set is-a Bag and Or-
deredSet is-a Sequence and so proposes the refactoring shown in Figure 10.

This refactoring eliminates some duplication and inconsistency. For instance, Set::asBag()
is doubly redundant; it can now be inherited, and the associated kind conversion is no longer
needed.

Further redundancy arises once covariant overloads are removed. The OCL 2.3 specification
defines each of:
Bag::union(Bag<T>):Bag<T>,
Bag::union(Set<T>):Bag<T>,
Set::union(Bag<T>):Bag<T>,
Set::union(Set<T>):Set<T>.
With the refactored hierarchy, the mixed Set/Bag signatures are redundant since Set conforms

to Bag. We need only:
Bag<T>::union(Bag<T>):Bag<T>
Set<T>::union(Set<T>):Set<T>

1 using <> rather than a UML template to avoid tooling limitations
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Figure 10: Collection Refactoring proposed by Buettner.

Introduction of a further UniqueCollection as shown in Figure 11 provides further opportuni-
ties to eliminate redundant declarations.

The Set operations that are also applicable to OrderedSet may be declared in UniqueCollection
so that Set and OrderedSet have consistent functionality and so that UniqueCollection operations
can be invoked without needing to convert Set types.. For instance Set::-(Set):Set may
be made more flexible as
UniqueCollection::-(UniqueCollection):UniqueCollection
Set::-(UniqueCollection):Set
OrderedSet::-(UniqueCollection):OrderedSet
For the case of removal from an OrderedSet, the ordering remains valid. For other binary

unique collection operations such as addition to an OrderedSet, the ordering of two OrderedSets
may be based on different sorting criteria and so the combined OrderedSet may not satisfy either.
UniqueCollection::union(UniqueCollection):UniqueCollection
Set::union(UniqueCollection):Set
OrderedSet::union(UniqueCollection):Set
It is tempting to remove the overloads and always return Set, however this would inhibit a

user-defined SortedSet class that might not be an extension of Set.

4.4 Collection Operation Arguments

The current specification of a library operation such as Bag::excluding(object : T)
leaves the semantics of T unclear. Is T the same or another type to the collection element type
Bag<T>? Clause 11.6 has a preamble defining T, but does this apply to Clause 11.7 too?

A Java programmer will be surprised if the behavior does not support error-free ‘removal’ of
inappropriate objects in the same way as Collection<T>.remove(Object).

A user expecting very strong type checking may be disturbed if inappropriate types are silently
ignored.

A modeled library requires the specification to explicitly choose between:
Bag<T1>::excluding(object : T1)
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Figure 11: Further Collection Refactoring.

Bag<T1>::excluding(object : OclAny)
Bag<T1>::excluding<T2>(object : T2)
When dealing with null collection content, OCL provides a safe silent helpful behavior, so

allowing the excluding operation to ignore inappropriate exclusions seems appropriate. This
eliminates the first option. Introduction of the T2 template parameter is explicit but redundant so
a Java-like Bag<T>::excluding(object : OclAny) seems the better clarification.

4.5 Modularity

The OCL specification provides support for concepts that have very specialized UML util-
ity. Given OCL’s increasing use in non-UML applications, it seems appropriate to migrate
the specification of these concepts from OCL and relocate it with the specification of the re-
lated UML packages. In exchange, OCL should support merging of modules that extend a core
behavior[CD].

The import statement in the Library DSL supports migration of the OclMessage and associated
declarations to perhaps UmlMessage.oclstdlib.

The UML package merge defining the OCL pivot meta-model[Wil] supports the merge of
additional packages.

When Clause 9 has a complete exposition of the grammar for the concrete syntax, this too can
support a merge of additional grammar constructs.

The most obvious concepts for elimination are messages and states. It is unclear whether
further modularization as suggested by Akehurst[DZW] isolating tuples, iterators, collections
and primitives is useful. Perhaps even finer grain modularization could be useful so that either
Real or UnlimitedNatural could be omitted.
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5 Awkward Operations

Most of the library is easy to model using the concepts outlined above. However a few operations
are more troublesome.

5.1 Implicit as-set: OclAny::oclAsSet()

The OCL specification variously specifies that, for a defined object, an -> operation implicitly
creates either a set or a bag containing that object. If the object is null an empty bag or set is
created. If the object is invalid, no collection is created, rather the invalid value propagates. This
creation has to occur at run-time since, unlike the equivalent implicit collect shorthand, there is
no way to reify the set/bag creation at compile-time. It is necessary to know whether the object
is null or invalid in order to synthesize creation of the appropriate CollectionLiteralExp content.

Introduction of an OclAny::oclAsSet() operation allows the analysis to be performed statically
and persisted in the AST. The complexities of null and invalid can then be resolved by dynamic
dispatch selecting between:
OclAny::oclAsSet() – returns Set{self}
OclVoid::oclAsSet() – returns Set{}
OclInvalid::oclAsSet() – returns invalid
Alternate semantics may be configured by binding the OclAny and or derived operations to a

different implementation.
The above declarations conveniently ignore the return type. Static type information is lost

by a simple declaration such as OclAny::oclAsSet() : Set<OclAny>. This can be
resolved by the pseudo-type OclSelf that captures the statically determined context type.

The declaration OclAny::oclAsSet() : Set<OclSelf> therefore allows the use of
Set<String> as the context type in ’aString’->forAll(...) and String rather than
OclAny as the iterator type.

5.2 Reflection: OclAny::oclType()

The oclType operation is irregular in that its return is an expression whose value is a type rather
than an object. The operation return is therefore at a different meta-level.

This operation was not present until OCL 2.2, since Element::getMetaClass() was
thought to support reflection. Unfortunately getMetaClass() is defined by MOF which is
not merged to form part of a UML meta-model.

In OCL 2.2, the specification is: OclAny::oclType() : Classifier with Classifier
confusingly playing a role at two different meta-levels, even though EMOF has no Classifier.

Examination of the postcondition for Sequence::first() reveals a fully reflective usage
of oclType to access the element type of the sequence:
if self.oclType().elementType.oclIsKindOf(CollectionType).
The CollectionType::elementType access therefore requires oclType to return at

least a CollectionType. An oclAsType(CollectionType) cast could be introduced to fix
the above example, but it demonstrates that the derived type is statically determinate and that it
is useful to make that type available.
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Figure 12: Class Conformance Relationships.

The templated Class type, shown in Figure 12, provides Class<CollectionType> as the
meta-class of CollectionType. Both CollectionType and its meta-class conform to Classifier and
OclAny since conformance of all types to OclAny occurs on both the model and meta-model
level.

Use of the OclSelf pseudo-type in conjunction with the templated meta-class also resolves the
problem with the oclType return type. A consistent specification is:
OclAny::oclType() : Class<OclSelf>
The Class<T> is used to propagate static type information. Class<T> conforms to Clas-

sifier so a fully reflective tower is possible and it is meaningful to write:
self.oclType().oclType().oclType().ownedAttribute

5.3 Type-cast: OclAny::oclAsType(...)

The oclAsType operation is similarly irregular in that its argument is an expression whose value
is a type rather than an object. The operation argument is therefore at a different meta-level.

In OCL 1.6, this is specified as: OclAny::oclAsType(typename : OclType) : T
with T ill-defined and OclType a mysterious Enumeration over an open set of all possible classi-
fiers.

In OCL 2.0, this is declared as: OclAny::oclAsType(typespec : OclType) : T
with OclType now a little-understood power-set.

In OCL 2.2, the declaration is: OclAny::oclAsType(type : Classifier) : T
with T still ill-defined and the use of Classifier at a different meta-level is unexplained. The
descriptive text refers to ‘t’ rather than ‘type’.

In OCL 2.3, the declaration is unchanged but the typo in the descriptive text now refers to‘T’
rather than ‘type’.

The underlying rationale seems to be to try and establish an identity for a meta-type without
imposing the cost of the reflective tower that would arise with a true meta-type. This was not a
requirement in the OCL 2.0 Request For Proposals[Objg], and the usage of oclType() requires
reflection anyway, so it seems appropriate to provide reflection rather than an inconsistent facility
that does not.

A consistent specification is: OclAny::oclAsType<T>(type : Class<T>) : T
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This exploits the conformance of T to the Class<T> instance to preserve the static type. It
is assumed that the model of the unspecified TypeValue class is specified to be a Class<T>.

5.4 OclAny::allInstances(...)

The allInstances operation is irregular in that it is the only class operation; all other operations
are instance operations. This prompted OMG Issue 8937[OMG] to suggest that ‘::’ rather than ‘.’
should be used when invoking allInstances in the concrete syntax. However allInstances is not a
Classifier class operation, rather it is an operation on the statically determined derived Classifier
class. Thus all instances of Person are returned by the invocation Person.allInstances()
which is handled by the Classifier::allInstances() operation. There is no such op-
eration as Person::allInstances().

A consistent specification for this is:
static Classifier::allInstances() : Set<OclSelf>
Once again OclSelf solves the typing problem enabling the return type to use the statically

determined derived Classifier type. The ‘static’ keyword indicates that the source should be a
type-valued expression. This ensures that aPerson.allInstances() can be diagnosed as
an undefined operation.

5.5 Collection::collect(...)

The collect() iteration is potentially awkward since the return type is a flattened collection and
consequently there is no unique mapping from input to output types.

In OCL 2.0, it might appear that a Bag<T> return value could have been produced by an input
value corresponding to any of the Bag<T>, Bag<Bag<T>> or Bag<Bag<Bag<T>>> types,
but the first level element types have no mutual conformance so such content is a type error. OCL
2.0 does not support mixed depth collections.

In OCL 2.2, Collection conforms to OclAny, and so a collection may contain both collection
and non-collection values. However, for a heterogeneous collection, the existing type system
cannot achieve greater precision than Collection<OclAny>, since OclAny is the only com-
mon type of a collection and a non-collection.

This lack of precision makes the declared return type of the collect operation and consequently
an implicit collect almost unusable for heterogeneous collections. Fortunately this language
limitation does not impact the collect() declaration and so we only need declarations that are
valid for homogeneous collections.

Collection<T>::collect<T2>(i : T |
body : Lambda T(): T2) : Collection<T2>

Collection<T>::collect<T2>(i : T |
body : Lambda T(): Collection<T2>) : Bag<T2>

Bag<T>::collect<T2>(i : T |
body : Lambda T(): T2) : Bag<T2>

Sequence<T>::collect<T2>(i : T |
body : Lambda T(): T2) : Sequence<T2>
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Figure 13: Comparable.

Figure 14: Collection::min.

Sequence<T>::collect<T2>(i : T |
body : Lambda T(): Sequence<T2>) : Sequence<T2>

Note that the final declaration for Sequence is not an overload. Introduction of modeled signa-
tures highlights a gap in the specification as to what happens when unordered content is collected
from an ordered collection. The lack of overload above gives an unambiguous interpretation;
mixed ordering collect yields a Bag.

6 Further Modeling

The preceding sections have identified ways in which awkward declarations can be modeled. We
now examine ways in which some well-formedness rules can be modeled more overtly.

6.1 Comparable

The Collection::min operation specifies “Elements must be of a type supporting the min
operation. The min operation - supported by the elements - must take one parameter of type T and
be both associative and commutative. UnlimitedNatural, Integer and Real fulfill this condition.”

The sortedBy iteration requires “The type of the body expression must have the < operation
defined.”

These similar functionalities with informal and very different requirements can be modeled
by taking inspiration from Java’s Comparable interface as shown in Figure 13. This enables the
min operation to fully modeled as shown in Figure 14.

An additional pre-condition, not yet supported by prototype tooling, should permit the implicit
conformsTo Comparable within the postcondition to be expressed explicitly:
pre: self.oclType().elementType.oclIsKindOf(Comparable)
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Figure 15: Summable.

6.2 Summable

A similar interface type may introduced to model the requirements of Collection::sum()
as shown in Figure 15.

If this interface type is realized by String as well as Real, then string splicing can be achieved
by Sequence<String>::sum().

7 Impact

A number of new concepts have been introduced in this paper, but very few of them have any
impact on OCL, merely on the ability to provide a modeled OCL specification.

From a user perspective, the main change is a recommendation to migrate towards < > rather
than ( ) so that OCL has explicit UML-aligned templates rather than just template-like collec-
tions.

The clearer declarations and semantics for the library will require implementers to review their
endeavors to interpret earlier specifications.

• Elimination of covariant overloading

• Refactored Collection hierarchy

• Comparable and Summable interfaces

• oclAsSet

8 Related Work

Bräuer[BD] observed the utility of Type and Operation generics to model the Collection::product
operation. Consequently Dresden OCL supports a partial model of the OCL Standard Library
using an EMF Tree Editor to support direct editing a Pivot Model representation with Ecore-like
generics.

The DSL presented here provides a Concrete Syntax for a UML-derived Pivot Model[Wil]
with UML templates. Lambda Expressions are well known to Computer Science, but new to
OCL; they support modeling of Iterations.

Baar[Baa] called for modular OCL with imports to support user libraries.
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9 Conclusions

Elimination of typographical errors from the OCL specification was an original motivation for
introduction of an OCL Standard Library model. But as we have shown, the benefits are much
greater; the model is readable, extensible, interchangeable and toolable.

We have described prototype Eclipse OCL tooling for a Domain Specific Language for the
OCL Standard Library model. This tooling enables the official model and extended models to be
produced easily and reliably.

We have followed through some of the problems raised by attempts to model the library and
revised the library content slightly and introduced additional concepts to support the model.

We have shown how modeled declarations can detect errors and provide definitive semantics
for gaps in the current specification.

Many thanks to the anonymous referees for some provocative and insightful comments.
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