Electronic Communications of the EASST

Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation
and Visual Modeling Techniques
(GTVMT 2013)

ModGraph meets Xcore: Combining Rule-Based and Procedural
Behavioral Modeling for EMF

Sabine Winetzhammer and Bernhard Westfechtel

13 pages

Guest Editors: Matthias Tichy, Leila Ribeiro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

ModGraph meets Xcore: Combining Rule-Based and Procedural
Behavioral Modeling for EMF

Sabine Winetzhammer' and Bernhard Westfechtel

![firstName].[lastName] @ uni-bayreuth.de
Applied Computer Science 1 - Software Engineering
University of Bayreuth, Germany

Abstract: Model-driven software engineering aims at increasing productivity by
developing high-level executable models. The Eclipse Modeling Framework (EMF)
significantly contributes toward this goal. Unfortunately, EMF supports only struc-
tural models based on the Ecore metamodel. Recently, Xcore has been developed to
extend EMF with behavioral modeling. To this end, Xcore provides a single textual
language for both structural and behavioral modeling. While Xcore follows a proce-
dural approach to behavioral modeling, ModGraph is an EMF-based tool based on
a rule-based paradigm (graph transformation rules, which allow to specify behavior
in a declarative way). The combination of EMF, Xcore, and ModGraph results in
an environment for model-driven software engineering which provides full-fledged
support for both structural and behavioral modeling. Altogether, we obtain an en-
vironment in which software engineers are concerned only with models rather than
with programs.

Keywords: Model-Driven Software Engineering, Behavioral Modeling, Graph Trans-
formation Rules, Control Flow, ModGraph

1 Introduction

The Eclipse Modeling Framework (EMF) [SBPMO09] has been designed with the intent to im-
prove the software process by providing lightweight support for model-driven software engi-
neering. For this reason, EMF provides a fairly minimalistic metamodel for structural modeling
(Ecore, an implementation of Essential MOF (EMOF)). Using the components of the EMF core,
software engineers create EMF models as instances of the Ecore metamodel. Furthermore, they
generate code from an EMF model which provides basic operations for creating objects, as-
signing attribute values, as well as creating and deleting links. The generated code ensures the
model’s semantics, in particular with respect to references (which may be bidirectional and des-
ignated as containment references).

Unfortunately, the EMF core is confined to structural modeling. As a consequence, the code
generator may create code only for the basic operations mentioned above. For user-defined
operations, only methods with empty bodies may be generated. Software engineers need to
extend the generated code, implying that they need to work on two different levels of abstraction.
Thus, model-driven software engineering is supported only partially. (‘“Swiss cheese” approach
to code generation.)

1/13 Volume 58 (2013)

mailto:[firstName].[lastName]@uni-bayreuth.de

ModGraph meets Xcore E}

To close this gap, structural modeling needs to be complemented with behavioral modeling.
To this end, we have developed ModGraph [Winl2], which augments EMF with graph trans-
formation rules operating on EMF model instances. With ModGraph, complex in-place model
transformations may be specified at a high level of abstraction. Its rule language supports pa-
rameterized graph transformation rules with pre- and postconditions, multi-objects, negative ap-
plication conditions, and OCL expressions for specifying constraints, attribute values, and paths.
Each rule refines an operation defined in an EMF model. ModGraph is tightly integrated with
the EMF code generator since it extends the generated EMF code with the code generated from
graph transformation rules.

So far, however, the combination of EMF and ModGraph did not provide fotal model-driven
software engineering, which would imply that software engineers may generate complete ap-
plications from structural and behavioral models. ModGraph covers only rule-based behavioral
modeling. In virtually all practically relevant applications, control structures are required in ad-
dition to determine which rules are applied in which order. Furthermore, experiences gathered
from inspecting large case studies indicate that the use of graph transformation rules pays off only
for complex model transformation tasks [BWW12a]. In simpler cases, procedural approaches
to behavioral modeling are sufficiently expressive and more concise than graph transformation
rules.

So far, a software engineer using EMF and ModGraph has defined the structural model in
EMEF, has used ModGraph for sufficiently complex operations which may be specified as single
graph transformation rules, and has encoded “the rest” in Java. Thus, operations have been
implemented in Java if (a) control structures are required to compose graph transformation rules
or (b) the operation is so simple that it does not pay off to write a graph transformation rule.
Altogether, behavioral modeling has been supported only partially.

In this paper, we present the integration of ModGraph with Xcore [Ecl12], which has been
developed recently to add behavioral modeling to EMF. Xcore strives for total model-driven
software engineering by providing a single comprehensive language for both structural and be-
havioral modeling. To this end, Xcore introduces a textual syntax for EMF models as well as
procedural behavioral models. Xcore is driven by the vision that software engineers need no
longer deal with code in a programming language such as Java (as current programmers do not
inspect assembly or byte code).

The integration of Xcore and ModGraph offers the following benefits:

e Complex transformations which are awkward to program in Xcore may be specified with
ModGraph’s high-level graph transformation rules.

Graph transformation rules may be composed with control structures provided by Xcore.

Simple operations may be encoded exclusively in Xcore.

Complete application code may be generated by relying on the code generators of EMF,
Xcore, and ModGraph.

Current and future work aims at re-targeting the ModGraph code generator to Xcore, to
gain platform independence for ModGraph: Generating code for a specific programming
language may be delegated completely to Xcore.

Proc. GTVMT 2013 2/13

Eg ECEASST

The rest of this paper is structured as follows: Section 2 provides an overview about Mod-
Graph, XCore, EMF and their interaction. Section 3 shows the interaction within a running
example. Section 4 confines our approach from others while Section 5 concludes the presented
facts as well as current and future work.

2 Overview

This section provides an overview about the ModGraph graph transformation rules, the Xcore
modeling language, and their interaction with each other and EMF.

2.1 ModGraph Graph Transformation Rules

Within a ModGraph graph transformation rule you can model the behavior of an operation spec-
ified in an Ecore class diagram or in an Xcore model. Therefore an instance of the Ecore class
diagram is considered as a graph, typed over the class diagram. The core of a ModGraph rule is
the Graph Pattern. It includes the subgraph to be searched in the model instance and the changes
to be performed. The Graph Pattern can be constrained using pre- and postconditions written in
OCL or using a negative application condition modeled as a graph.

Modeling the Graph Pattern you may use several kinds of nodes and edges. Nodes are distin-
guished into a current object, named this, bound nodes, representing the non-primitive param-
eters of the operation, and unbound nodes, representing the objects to be searched in the model
instance. Both may be single- (simple object and parameter) or multivalued nodes (multiobject
and multiparameter). Nodes provide a status which may be preserved (grey, no marker), created
(green, ++), or deleted (red, ——). They can be marked as return parameter (< <<out>>>) or as
optional (<<optional>>) nodes. Nodes to preserve or to delete may be constrained, nodes to
create or to preserve may be modified, for example by setting an attribute value or calling an
operation (operation calls allow ModGraph rules to interact directly with each other).

All nodes may be connected by two kinds of edges, links (instances of references) and paths
(derived references). Analogously to nodes links provide a status. Creation links, instantiating
multivalued references may be ordered. Paths are marked with a path expression, written in
OCL. For details on the metamodel of the graph transformation rules see [BWW12b].

Each rule is validated against the meta model of the graph transformation rule and the user
defined Ecore model. After a successful validation the modeler may generate code from the rule.
This code is injected right into the EMF or Xcore generated code, as described in [Win12].

2.2 Xcore

Xcore provides a concrete syntax for Ecore. Xbase [EEK ™ 12] is used to model behavior, i.e. the
bodies of operations. Both languages are specified in Xtext [Xte12], an open-source framework
to develop domain specific languages. Xcore is a modeling and a programming tool. Its goal is
to eliminate the dividing gap between modeling and programming.

Xbase itself is an expression language that was designed to be reused in any domain specific
language. Its expressions provide procedural programming constructs: control structures and

3/13 Volume 58 (2013)

ModGraph meets Xcore

i

Structure Behavior
Procedural Rule-based
N
Ll_St;rt\/ Ecore model } implement
-1, ‘ ModGraph rule }—
create |
Generator model call |
convert I
c Y __ implement / |
ks Xcore model
B Structural Xbase <_tr_T5f_°”_“ |
ju model operations
38
@
5 generate gerdrate
E implement
3 Generated | Implemen
Ecore model | / \
generate structure | generate
¥ ‘ Java class ‘ ‘ Java methods |

|:| Executable model

Figure 1: Overview about the tools and their interaction with ModGraph.

|:| Program code

programming expressions. From a modeler’s point of view we constitute that Xbase used with
Xcore lifts Java on a modeling level, though the Xbase syntax is very Java-like.

Any existing Ecore model can be converted into an Xcore model via the generator model and
then extended with behavior modeling.

2.3 Modeling with ModGraph, Xcore and Ecore

Here we show the different and permeable ways ModGraph, Xcore and EMF interact. Figure
1 depicts the interactions. We distinguish strictly structural from behavioral modeling. Further-
more behavioral modeling is partitioned into procedural and rule-based behavioral modeling.
Specifying a model, the modeler may use the following approaches:

1. The new way: Starting with an Xcore model, marked with a solid arrow denoted with
"Start’ (red) in Figure 1, the modeler may define the structural model and simple or pro-
cedural operations directly. Complex operations may be specified by ModGraph rules,
taking the added value of graph transformation rules into account. Doing so, the modeler
marks an operation in the Xcore file and selects *'Implement as ModGraph gt rule’ from
the popup menu shown in Figure 2, depicted by the dashed arrow ’implement’ in Figure

Proc. GTVMT 2013

4/13

E} ECEASST

2 Bugmodel.xcore %

20- class User
21 { String username
22 String email

23 refers Group [+] memberIn opposite)
24 op unique Project[] [P TIdualaas Replace With ’

ModGraph 4 Implement as ModGraph gt rule

Remove from Context Ctrl+Alt+Shift+Down

Figure 2: Implement Xcore operation as ModGraph rule.

1. This arrow is also marked with "transform’, because current work aims at a model-to-
model transformation from ModGraph to Xcore. The code ModGraph generates for rules
implementing Xcore operations is injected right into the Xcore generated code. Hence,
ModGraph operations may call and may be called by Xcore operations.

2. The classical way: Starting with the dashed arrow marked with ’Start’ (grey) in Figure 1
the modeler may still model a ModGraph rule based upon an Ecore class diagram. One
may generate the static structure as usual via the generator model and then inject the Mod-
Graph generated code right into the EMF generated one. This approach is described in
detail in [BWW12b].

3. Up to the new: Migrating an existing Ecore model, the modeler may convert the model
into an Xcore model via the generator model marked with ’convert’ in the grey part of
Figure 1. As this is a model-transformation all ModGraph rules can be reused without any
problems. Procedural and simple operations can be modeled in Xcore now. Finally the
code generated from the ModGraph rules is injected into the Xcore generated code.

4. Back to the roots: Using the generated Ecore model to implement operations with Mod-
Graph rules also starts with an Xcore model. One may model the structure and some
operations in Xcore. The Xcore code generator generates an Ecore model within code
generation, shown in Figure 1 as ’generated Ecore model’. This model may be used to
implement operations as ModGraph rules the classical way. The difference herein is, that
the ModGraph code is still injected into the Xcore generated code.

Concluding we provide a very flexible and seamless integrated approach: you may start with
Ecore or Xcore and convert one into another taking the specified ModGraph rules with you in
order to get an executable model.

3 Running Example

We use a bug tracker model to demonstrate the power of ModGraph and Xcore working together.
The bug tracker was developed the classical way, starting with an Ecore class diagram, shown
in Figure 3, refined by ModGraph graph transformation rules and then converted into an Xcore
model to model the procedural part.

5/13 Volume 58 (2013)

ModGraph meets Xcore

T TOES . 5 BugTracker < <datatype> >
@ Status = pseudoStaticNumber - Elnt © Calendar
~ NEW & init() throws GTFailure)]) < <javaclass> > java.util.Calendar
- CONFIRMED @ createUser(EString, EString, EString, EString,Group) - User throws GTFailure : —
— REJECTED @ createGroup(EString) : Group throws GTFailure IS
- DONE # createProject(FSiring User Group) - Project throws GTFailure 2 Severity
— FIXED @ alopenTickers(|cket Throws EE Fanure - Low
— IN PROGRESS | | @ allBrokenProjects() : Project throws GTFailure - NORMAL
= @ aliCleanProjects() - Project throws GTFailure - HIGH
@ assignStatusOfUsersProjecis Tickets(User, Project Status) throws GTFailure
usery @ oglnhser;EStrlng) User throws GlFailure trackedPrgjects
0.* 0.
g User groups v0.* accessingGroups :
- : . H Group 0~ B Project
c E;ﬂgaﬁsﬁﬁm"g g membeq’"ﬁ = name - EString__ accessibleProjects| « description - FString
= surname - EString = description : EString 0_*| = name : EString
= email - EString 1 |
leader)
0.1 1 1\ 1 E Ticket owningProject
assignee reporter = number - Elnt
1) ; authpr 0.* = createdAt - Calendar
Crealon L T'comments | e getAssignee() - User throws GTFailure
B TicketRevision 1 & addComment(E String. EString. User) - Comment
o title - EString . @ changeSiatus(Status User) throws GTFailure
o description : ESfring COsETHesSion @C ange‘l’lcket(SeventyiEStrlngiEStrlngiW' ¢
= createdAt : Calendar| 1.." @ assignTo(User User) reportedTickets
= severity - Severity history

= status © Status

Figure 3: Running example: Bug tracker Ecore model.

The Ecore class diagram. The bug tracker tracks an arbitrary number of users and projects
containing tickets. Each ticket, identified by a unique number, has a reporter of type User and
revisions all of which are assigned to an user. Users are members of groups. Each group can
access an arbitrary number of projects.

Each class modeled in the class diagram has a number of attributes and operations. In the
following we are considering only the marked ones.

Xcore as control flow language. Such a bug tracker has to be initialized to be used. Though
all tickets are identified by a unique number, this number has to be initialized within the bug
tracker. Operations like createGroup, createUser or createProject may be imple-
mented very well by graph transformation rules. Figure 4 shows the rule implementation for
createProject. This method carries three parameters: a leader for the Project of type
User, an initial group of users named firstGroup of type Group and a String name for
the project. A precondition ensures that the project will get a proper name, not the empty string
or worse null. In the graph pattern the two parameters are shown with rounded corners and the
current object, an instance of the BugTracker class, marked with this. A new project is created
and its name is assigned to the method’s primitive parameter name. The project is marked as
return parameter of the method. It is connected to its leader and the accessing group as well as to
its bug tracker. This model modification is only performed if the negative application condition
does not hold: There must not be a project with the same name yet. The other methods are
implemented similarly.

For the initialization of the bug tracker all of these methods are needed, hence they are called
as a sequence during the initialization as shown in Listing 1.

Proc. GTVMT 2013 6/13

ECEASST

OCLPrecondition: name<>null and name.size() > 0

Graph Pattern Negative Application Condition
firstGroup leader this
Constraints GRS Constraints
Changes Changes
e
accessiblePrnggts ++|leader trackédProjects
+
this <<put>> p2 : Project
; i - i Constraints
P trackedProjects ++ DFOJsh‘;tn- :’SFOJE‘I
Changes ++ 9 name == name

name = name

Figure 4: Graph transformation rule for BugTracker: :createProject.

OCLPrecondition: author.accessibleProjects()-=includes(self.owningProject)
Graph Pattern

this . history
Constraints +4+ +t+newRevision: TicketRevision
Changes . currentRevision Changes

++ titte = oldRevision.title

ENna description = oldRevision.description

‘_CFEBtUF severity = oldRevision severity

++
Changes status = status

Constraints

createdAt = java.util.Calendar.getlnstance()

urrentRevision
oldRevision : TicketRevision assignes
Constraints ++
<<pptional>>
HEis | Senslblels assignee assignee : User
status |= Status.FIXED Constraints
Changes

Changes

OCLPostcondition: self.currentRevision <> null

Figure 5: Graph transformation rule for Ticket : : changeStatus.

Listing 1: Xcore model for BugTracker: :init ().

class BugTracker
{ int pseudoStaticNumber

op void init () throws GTFailure({

pseudoStaticNumber = 0
var group = createGroup("inititators")
var user = createUser ("firstUser",

"Someone" , nmn , n Il’ group)
createProject ("Dummy Project", user, group)

7/13

Volume 58 (2013)

ModGraph meets Xcore Eﬁ

While working with such a bug tracker a number of projects may belong to the same project
leader. The project leader may want to change the status of all tickets of (some of) his projects,
e.g. if he does not want to continue the projects. Therefore the method assignStatusOf—-
UsersProjectsTickets is implemented as shown in listing 2, which calls the ticket’s
method changeStatus implemented with a graph transformation rule (Figure 5) for each
ticket.

Listing 2: Xcore model for BugTracker::assignStatusOfUsersProjects—
Tickets (...).

op void assignStatusOfUsersProjectsTickets (User user,
Project[l..x] projects, Status status)
throws GTFailure({

for (project : projects) {
if (project.leader == user) {
for (ticket: project.reportedTickets) {
ticket.changeStatus (status, user)

Xcore to model a simple operation. The getter-method for the initialization of the running
number pseudoStaticNumber is overwritten as shown in Listing 3. The standard getter-
method is also generated, but with different name.

Listing 3: Xcore model for BugTracker: :getPseudoStaticNumber ().

op int getPseudoStaticNumber () {
pseudoStaticNumber = pseudoStaticNumber +1
return pseudoStaticNumber

Advantage of ModGraph rule. Figure 6 shows two implementations of changeStatus in
class Ticket. The method creates a new ticket revision and connects it to the ticket (current
object), the author and the assignee. ModGraph’s rule implementation is understandable
within a glimpse: graphical, color-coded, clearly structured nodes and edges visualize the actions
to be performed. In Xcore the comment, pre- and postconditions have to be searched inside the
code, while the rule shows them always at the same place. Using OCL, Xcore requires an explicit
annotation. ModGraph includes the usage of OCL. Creating objects simply means creating a
node in a ModGraph rule, while Xcore requires a whole factory call. Assigning attribute values
takes the same effort in both languages. But taking into account that they are calculated from the

Proc. GTVMT 2013 8/13

ECEASST

//0CL support:
@Ecore(invocationDelegates="http://www.eclipse.org/emf/2002/Ecore/0CL/Pivot®,
settingDelegates="http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot",
validationDelegates="http://www.eclipse.org/emf/2002/Ecore/0CL/Pivot")

annotation "http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot" as OCL
class Ticket{

Status done = 'DONE’

Status fixed = 'FIXED'

@GenModel(documentation="Changes the status of a revision.")

@OoCL(pre_prel = "author.accessibleProjects()->includes(self.owningProject)")
@OCL(post_postl = "self.currentRevision <> null™)

op void changeStatus(Status status, User author) throws GTFailure{

//match

var oldRevision = this.currentRevision

if(oldRevision.status == done & oldRevision.status == fixed){ ® T Comment % | outine. = O
return Project:

} Bugtracker

var assignee = oldRevision.assignee iﬁﬂ:ﬁx&?iﬁ”

//create Comment

var newRevision = Changes the status of a revision|

BugmodelFactory: :eINSTANCE. createTicketRevision
//set Attributes directly
newRevision.title= oldRevision.title
newRevision.description = oldRevision.description
newRevision.severity = oldRevision.severity

OCLPrecondition: author.accessibleProjects(- >includes(sel f.owningProject)

newRevision.status = status Graph pattern
isi = e hist
newRevision.createdAt = Calendar::getInstance b IO newRevision : TicketRevision
//set Links Changes currentRevision Changes
if(assignee != null) ++ title = oldRevisiontitle
newRevision.assignee = assignee e — description = oldRevision.description
newRevision.creator = author Constraints creator | severity = oldRevision.severity
=
this.currentRevision = newRevision Changes status = status
this.history.add(newRevision) - createdAt = java.util Calendar,getinstance()
" . urrentRevision
} oldRevision : TicketRevision asswgrff

Constraints
<<gptional >>

assignee assignee : User

status != Status FIXED Constraints
Changes

status != Status DONE

Changes

OCLPostcondition: self.currentRevision <> null

Figure 6: Comparing Xcore and ModGraph implementation.

pre-state of the model, complicates the Xcore code (not shown in the example). Linking objects
means in Xcore performing a list operation or setting an attribute, while in ModGraph you may
draw a simple line, without taking into account that a node may be optional. Concerning the
matching of objects, Xcore forces the modeler to get objects or lists and in case of constraints,
filter them manually. In a ModGraph rule the modeler simply draws the object and attaches the
constraints.

4 Related Work

By combining ModGraph and Xcore, we provide an environment for model-driven software
engineering which offers full-fledged support for both structural and behavioral modeling. This
approach goes beyond our previous work which relied on Java for defining control structures
for graph transformation rules [BWW11, BWWI12b]. Please notice that we decided to reuse

9/13 Volume 58 (2013)

ModGraph meets Xcore E}

GT rules control flow .
language/tool textual \ graphical | textual \ gﬁzphical EMF-compliant
eMOFLON [ALPS11] - X - X X
Fujaba [Ziin01] - X - X -
GReAT [AKN T06] - X - X -
GrGen.NET [JBK10] X - X - -
Henshin [ABJ 7 10] - X - X X
MDELab [GHS09] - X - X X
ModGraph/Xcore - X X - X
PROGRES [SWZ99] - X X -
VIATRA2 [VBO07] X - X -

Table 1: Graph transformation languages and tools

Xcore’s language for procedural modeling rather than to design a new language for this purpose.
In this way, we stick to the constant goal underlying the ModGraph project: to improve EMF’s
modeling languages and tools precisely by the added value of graph transformations.

Furthermore, the approach presented in this paper follows the lines of [BWW12a], where we
analyzed several large models based on graph transformations which were created for differ-
ent application domains. Altogether, the study implies that a language for behavioral modeling
should offer a mix of rule-based and procedural elements such that the modeler may select the
language constructs being most appropriate for the problem at hand. Moreover, we came to
the conclusion that control flow should be written in a concise textual notation offering control
structures known from structured programming. On the other hand, we still consider the graphi-
cal notation of graph transformation rules more intuitive and easier to understand than a textual
notation.

Table 1 compares the ModGraph/Xcore approach to several other languages/tools for graph
transformations with respect to the notations used for graph transformation rules and control
flows, as well as EMF compliance. The latter is satisfied if the respective language employs
the Ecore metamodel for structural modeling. Only eMOFLON, Henshin, MDELab, and Mod-
Graph/Xcore are EMF-compliant. VIATRA?2 was built with EMF, but introduces a custom meta-
model for structural modeling. Fujaba and GReAT are based on UML, PROGRES relies on typed
and attributed graphs.

Like ModGraph, most approaches favor graphical over textual representations of graph trans-
formation rules. In contrast, there is almost a balance of textual and graphical control flow lan-
guages. Based on our experiences with Fujaba’s story diagrams, we decided to adopt a textual
notation for control flow, which we consider more structured and concise.

Thus, ModGraph/Xcore combines textual control flow with graphical graph transformation
rules. Among all compared tools, only PROGRES provides a hybrid notation for rule-based and
procedural modeling. While PROGRES provides a native control flow language, we decided to
reuse the control flow language of Xcore.

Finally, most compared languages have been designed as layered languages which provide
control flow on top of a rule-based language for graph transformations. For example, in PRO-

Proc. GTVMT 2013 10/13

Eg ECEASST

GRES the elementary construct for specifying changes on a graph is a graph transformation rule.
Only Fujaba and ModGraph/Xcore deviate from this paradigm. In ModGraph/Xcore, simple
changes may be coded as ordinary procedural Xbase operations being composed from elemen-
tary operations for creating objects and links, assigning attribute values, etc. Fujaba’s story
diagrams may contain statement activities, i.e., fragments of Java code which are copied directly
into the generated code. However, statement activities introduce dependencies on the underlying
programming language and break the separation between modeling and programming.

5 Conclusion

Here we demonstrated the benefits of EMF, Xcore, and ModGraph interacting tightly, while
separating the structural, procedural behavior, and object oriented behavior model. The “Swiss
cheese” problem may be solved without loosing full integration of ModGraph into the EMF
world.

Current work aims at re-targeting the ModGraph code generator to lead ModGraph to platform
independence. Therefore ModGraph rules will be translated into the Xcore model via an in-place
model-to-model transformation, as depicted in Figure 1 with ’transform’. Concerning pre- and
postconditions as well as the creation and deletion of objects no problems are expected so far.
One of the sticking points is constituted by the matching. Furthermore a graph transformation
rule contains lots of implicit information, like the calculation of attribute values before changing
the model. This implicit information is mapped to the generated code so far. Two possibilities
have to be discussed:

e Matching in the Xcore generated code: The Xcore code generator may be adapted to
match again at code level. This leads to an implicit platform dependence: each change in
the Xcore generator has to be taken into account.

e Matching in a model: Create a helper model containing modeled Utility-classes all of
which contain the implicit information explicitly. This entirely uncouples ModGraph from
code. The whole information is stored in Xcore models. Hence, the code generation is left
to Xcore.

So far the second solution seems to be more feasible at the moment. ModGraph may be en-
tirely lifted to the modeling level, performing a model-to-model transformation from ModGraph
rules to Xcore operation bodies.

Strictly following the principle “Everything is a model”, a software engineer is no more con-
cerned with programs. He or she is enabled to total model-driven software engineering including
the benefits of graph transformation rules described above without leaving the EMF-world.

Bibliography

[ABJT10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In Petriu et al.
(eds.), Proceedings 13th International Conference on Model Driven Engineering

11/13 Volume 58 (2013)

ModGraph meets Xcore Eﬁ

[AKNT06]

[ALPS11]

[BWWI11]

[BWW12a]

[BWW12b]

[Ecl12]

[EEK"12]

[GHS09]

[JBK10]

[SBPMO09]

Languages and Systems (MODELS 2010), Part I. Volume 6394, pp. 121-135. Oslo,
Norway, Oct. 2010.
http://dx.doi.org/10.1007/978-3-642-16145-2

A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo. The Design of a Language
for Model Transformations. Software and Systems Modeling 5:261-288, 2006.

A. Anjorin, M. Lauder, S. Patzina, A. Schiirr. eMoflon: Leveraging EMF and Pro-
fessional CASE Tools. In INFORMATIK 2011. Lecture Notes in Informatics 192,
p. 281. Gesellschaft fiir Informatik, Bonn, October 2011. extended abstract.

T. Buchmann, B. Westfechtel, S. Winetzhammer. MODGRAPH - A Transformation
Engine for EMF Model Transformations. In Proceedings of the 6th International
Conference on Software and Data Technologies. Pp. 212 — 219. 2011.

T. Buchmann, B. Westfechtel, S. Winetzhammer. The Added Value of Programmed
Graph Transformations - A Case Study from Software Configuration Management.
In Schiirr et al. (eds.), Applications of Graph Transformations with Industrial Rel-
evance. Lecture Notes in Computer Science 7233, pp. 198-209. Springer Berlin /
Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-642-34176-2_17

T. Buchmann, B. Westfechtel, S. Winetzhammer. ModGraph: Graphtransforma-
tionen fiir EMF. In Sinz and Schiirr (eds.), Modellierung 2012. Lecture Notes in
Informatics 201, pp. 107-122. GI, Bamberg, Deutschland, March 2012.

Eclipse Foundation. Xcore. 2012.
http://wiki.eclipse.org/Xcore

S. Efftinge, M. Eysholdt, J. Kohnlein, S. Zarnekow, W. Hasselbring, R. von Mas-
sow, M. Hanus. Xbase: Implementing Domain-Specific Languages for Java. In
GPCE 12 Proceedings of the 11th International Conference on Generative Pro-
gramming and Component Engineering. Pp. 112-121. ACM, New York, NY, USA,
2012.

H. Giese, S. Hildebrandt, A. Seibel. Improved Flexibility and Scalability by In-
terpreting Story Diagrams. In Boronat and Heckel (eds.), Proceedings of the Sth
International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009). Electronic Communications of the EASST 18. York, UK, Mar.
2009. 12 p.

E. Jakumeit, S. Buchwald, M. Kroll. GrGen.NET — The Expressive, Convenient
and Fast Graph Rewrite System. International Journal on Software Tools for Tech-
nology Transfer 12:263-271, 2010.

D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF Eclipse Modeling
Framework. The Eclipse Series. Boston, MA, 2nd edition, 2009.

Proc. GTVMT 2013 12/13

http://dx.doi.org/10.1007/978-3-642-16145-2
http://dx.doi.org/10.1007/978-3-642-34176-2_17
http://wiki.eclipse.org/Xcore

@ ECEASST

[SWZ99] A. Schiirr, A. Winter, A. Ziindorf. The PROGRES Approach: Language and Envi-
ronment. In Handbook of graph grammars and computing by graph transformation:

vol. 2: applications, languages, and tools. Pp. 487-550. World Scientific Publish-
ing, 1999.

[VBO7] D. Varrd, A. Balogh. The model transformation language of the VIATRA?2 frame-
work. Science of Computer Programming 68(3):214-234, 2007.
http://dx.doi.org/10.1016/j.scico.2007.05.004

[Win12] S. Winetzhammer. ModGraph - Generating Executable EMF Models. In Mar-
garia et al. (eds.), Proceedings of the 7th International Workshop on Graph Based
Tools. Electronic Communications of the EASST 54, pp. 32-44. EASST, Bremen,
Deutschland, September 2012.

[Xtel2] Xtext 2.3 Documentation. 2012.
http://www.eclipse.org/Xtext/documentation.html

[Ziin01] A. Ziindorf. Rigorous Object Oriented Software Development. Technical report,
University of Paderborn, Germany, 2001.

13/13 Volume 58 (2013)

http://dx.doi.org/10.1016/j.scico.2007.05.004
http://www.eclipse.org/Xtext/documentation.html

	Introduction
	Overview
	ModGraph Graph Transformation Rules
	Xcore
	Modeling with ModGraph, Xcore and Ecore

	Running Example
	Related Work
	Conclusion

