Electronic Communications of the EASST

Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation
and Visual Modeling Techniques
(GTVMT 2013)

Learning Minimal and Maximal Rules from
Observations of Graph Transformations

Abdullah Alshanqiti, Reiko Heckel and Tamim Ahmed Khan

12 pages

Guest Editors: Matthias Tichy, Leila Ribeiro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

Eg ECEASST

Learning Minimal and Maximal Rules from
Observations of Graph Transformations

Abdullah Alshangiti', Reiko Heckel' and Tamim Ahmed Khan’

"amma?2 | reiko@mcs.le.ac.uk

Department of Computer Sciences, Leicester University, UK

2 tamim @bui.edu.pk
Department of Computer and Software Engineering, Bahria University, Pakistan

Abstract: Graph transformations have been used to model services and systems
where rules describe pre and post conditions of operations changing a complex state.
However, despite their intuitive nature, creating such models is a time-consuming
and error-prone process. In this paper we investigate the possibility of extracting
rules from observations of transformations, i.e., pairs of input and output graphs re-
sulting from successful transformations and individual input graphs were they have
failed. From such positive and negative examples, minimal rules are extracted, to be
extended by context that is present in all positive examples and missing in at least
one negative example. The result is are a maximal and a required rule, jointly with
the minimal rule defining the range of possible rules that could have created the ob-
served transformations. We report on an implementation of the approach, evaluate
its accuracy, scalability and limitations, and discuss applications to reverse engi-
neering visual constructs from observations of object states of components under
test.

Keywords: graph transformation, rule learning

1 Introduction

Reverse engineering is concerned with the extraction of specifications from existing systems.
This can either be achieved by analysing, statically, the implementation of the system or by,
dynamically, deriving the specification from observations of its behaviour. In the case of typed
graph transformation, the specification is given by a type graph and a set of rules and the system’s
behaviour can be represented abstractly by a transformation relation labelled by rule names. In
this setting, dynamic reverse engineering means to learn rules from observed transformations.
There are many potential applications of such a learning technique, corresponding to possible
applications of graph transformations, including the learning of model transformation specifica-
tions, business process, biological and software models, et.c. We are specifically interested in
software models where learning means to extract interface specifications in the shape of visual
contracts from components whose internal state is monitored at runtime [BMT"12]. At each
state we expect to extract an object graph, which changes whenever an operation is applied to
the component. Assuming that we are able to distinguish successful from failed invocations, we
obtain for each operation a set of pairs of object graphs for successful invocations, and a separate

1/12 Volume 58 (2013)


mailto:amma2 $\mid $ reiko@mcs.le.ac.uk
mailto:tamim@bui.edu.pk

Learning Rules from Observations of Graph Transformations E}

L<—1—K——R

(2) lm*

G<—+—D—r—H

m

)

Figure 1: DPO diagram representing a rule application

set of graphs where invocations have failed. From both we hope to derive visual contracts as
interface specifications for the operation.

In this paper we concentrate on the last part of the problem, the extraction of rules from exam-
ple transformations. After defining more precisely the problem, we discuss several challenges
and their solutions and present an algorithm for learning rules from positive and negative ex-
amples generated by the AGG tool [AGG12]. To cope with the uncertainly of how well the set
of examples observed can characterise the actual implementation of the operation, we derive
not just one rule, but three: A minimal rule that characterises the effect, but with minimal pre-
condition, a maximal rule that has as precondition the intersection of all contexts of successful
transformations, and a required rule that only has context where there is evidence of its necessity.
The results are evaluated and discussed, before we address related work and conclude the paper.

2 Problem

We assume the basic definitions of the algebraic double-pushout (DPO) approach over typed
graphs [EEPTO6]. A graph G = (V,E,s,t) consists of a set V of nodes (or vertices), a set E
of edges, and source, target functions s,t : E — V. A type graph TG is a distinguished graph
introducing vertex and edge types. A graph morphism f : G — H is a pair of mappings fy :
Gy — Hy, fg : Gg — Hg compatible with sources and targets. An instance graph over TG is
a graph G with a graph morphism typeg : G — TG. The category of graphs typed over TG is
called Graphyg.

A rule is a pair L d KTy Rof injective graph morphisms. In this paper we assume that
K =LNR and /,r are inclusions. Given an instance graph G, a rule p is applied at a match
m : L — G satisfying the gluing conditions by deleting the image of L\ R and adding a copy of
R\ L. That means, the application is only possible if the graph pattern L is mapped to G by m
in such a way that no element in L is identified with an element in L\ R, and after removing the
image of L\ R the resulting structure is still a graph, i.e., there are no dangling edges. The result
of this construction is a double-pushout diagram like in Figure 1, where the pushout on the left
represents deletion and the one on the right models creation. Figure 3 (A) shows a transformation
rule which, when applied to the graph in the top left of (B) at the match mapping r to r1, g to g1,
and & to h, produces the graph in the top right of (B).

A graph transformation system (GTS) (P, ) consists of a set of rule names P and a function

o I . . .
7 assigning each name p arule w(p) =L +— K —5 R. The resulting transformation relation

is denoted by G L. HC Graph;; x Graph;;. As a running example, we consider a simple
Hotel case study [HKM11] consisting of rules, such as bookRoom, occupyRoom, checkout, etc.

Proc. GTVMT 2013 2/12



Eg ECEASST

In this paper we are interested in extracting rules from example transformations. More pre-

cisely, we assume a type graph TG and set of rule names P, and for each p € P a set RN
Graph;; x Graphy of successful transformations and a set of Ve Graphy of failed trans-
formation attempts. Our aim is to define, for each rule name p € P, a rule 7(p) such that
ngpx i.e., the positive examples are part of the rewrite relation and 7L> N =2 =0, ie.,
none of the negative examples is.'

Here we face a number of potential problems. First, the sets 2, and 7& of examples may be
inconsistent, i.e., there may not be a single rule p performing all the transformations in 2, and
none of those in 717L> Second, even if such a rule exists, the sets of examples may not be varied or
representative enough to derive a unique result. Third, there is a tradeoff between having enough
examples to form a representative set and being able to process them in reasonable time.

We address the first problem by assuming that our examples are consistent, generating them
with the AGG tool [AGG12] for experimental purposes: Given a GTS and a start graph, rules are
applied randomly to generate sets of pairs of graphs as examples to learn from. This allows us
to compare the rules extracted with the original ones, as illustrated in Figure 2. Such generating
graphs by AGG will simulate dynamic object extraction, by e.g. tracing a number of different
sequences of system’s states at runtime.

To address the problem of ambiguity, for each p € P we will provide not a single rule, but
three: a minimal rule min(p), a maximal rule max(p), and an required rule req(p), all with the
same effect but differing by the additional context included in the precondition. The minimal
rule able to perform a given transformation can be determined using the construction proposed
in [BHEQ9]. For the maximal rule, we add all the context that is present in all successful exam-
ples. The required rule only contains context whose necessity is confirmed by failed examples,
i.e., where a failure shows that without the context present, the rule is not applicable. These three
rules can assist developers to understand the range of object behaviours, with req(p) representing
the best candidate to describe the functionality of the system.

To address the third problem, we have to ensure that our algorithm scales to large numbers
of examples. To this end we assume that in the rules’ left-hand sides there is no disconnected
context, i.e., each element that is not deleted itself is there as a node being source or target to
an edge that is deleted or to be created, or is connected by an undirected path to such a node
or edge. Thus, elements that are deleted or created provide us with anchor points from which
all other elements can be reached. Our evaluation of scalability shows that the learning effort
is linear up to about 800 pairs or graphs given as examples, but exponential in the size of the
graphs.

3 Algorithm

The example in Figure 3 illustrates our solution. Under (A) it shows the original rule occu-
pYRoom which is applied randomly to generate successful pairs of graphs, shown in (B), and
failed individual graphs represented in (C). The learning algorithm analyses these graphs with
the purpose of discovering a rule approximating the one in (A).

! For a relation R C § x §, by R; C S we denote its projection to its first component.

3/12 Volume 58 (2013)



Learning Rules from Observations of Graph Transformations Eﬁ

AGG-API
applying rules randomly
and generate ggx graphs

ivalidate
[ -—— 71

|

Successful Unsuccessful \ |
Pairs of Graphs | |Individual Graphs | :
|

|

|

|

|

|

|

|«—Apply in—> AGG

Discovering Rules Rules Discovered

From examples
| Our Learning scope

Figure 2: Learning and evaluation

The process has three stages. It begins with extracting the minimal rule for each successful
pair of graphs. Intuitively, for a given pair (G,H) we know that L\R=G\H and R\L=H\G.
Then, min(p) is the smallest rule satisfying these requirements [BHE09]. In the first pair of
graphs in (B), the dotted nodes and edges represent the minimal rule. It is given by H \ G, i.e.,
node b1:Bill and its outgoing edges bd, gi, as well as the nodes required to attach these edges,
namely r/:Room and g1:Guest. That means, nodes in the context are part of the minimal rule if
one of their incoming or outgoing edges is.

The second stage of learning is to discover the maximal rule. This requires the intersection
of all successful pre-graphs, extending the minimal rule by adding to its left-hand side a repre-
sentative for each graph element that occurs in all examples. Consider the two pairs of graphs
given in Figure 3 (B). The matches for their minimal rules are given by nodes r1,g1 and r7,g7
respectively. The intersection of their contexts include the Hotel node and the second pair of
room and guest present in each case, i.e., ¥2, g2 in the first rule and r6, g6 in the second, along
with their connecting edges. The maximal rule, as inferred from these two examples, is therefore
isomorphic to the first example.

In the third stage, the minimal rule is extended by required contexts only. To prove that context
is required, we need an example that fails because this context is missing.> Such an example is
given under (C), where the match for the minimal rule exists, but there is no transformation
because of the missing bi edge. This shows that the edge is required. The required rule is
therefore the subrule of OccupyRoom in (A) missing only the Hotel node and adjacent edges.

The algorithm is presented more explicitly in Algorithm 1. As is mentioned above, successful
examples produce the minimal and maximal rule, while the failures allow us to extend the mini-
mal rule towards the required rule by discovering which context is necessary for the application.

Rather than operating directly on the XML output of AGG, we import all graphs into a rela-
tional database, see line I, to handle efficiently large (numbers of) graphs. This is because pars-
ing and manipulating a large number of XML instances is costly both in time and memory. A
relational database provides the means to formulate complex operations on graphs as declarative

2 Disregarding for now the existence of too much context in the presence of negative application conditions.
3 The process at distance 5 and all nodes and edges are similar in their signatures. So which node and edge can be
removed safely to get the accurate intersection?

Proc. GTVMT 2013 4/12



Eﬁ ECEASST

et 4

(A) Occy, i bt
.- _OccupyRoom_ | h: | bi b}
Original rule - L e
given by AGG g e
0irl:i«—m: m
First
example
(B) 0ig71:«—h: h:
Two successful
transformation
bd:
Second bi:
example
gi:
G H
-—-r8: m: m:—{r9:] Nodes Edges
(©) h:Hotel m:Manage
Unsuccessful r:Room h:Has
i g:Guest bi:BookingInfo
irasformation b:Bill bd:BillDetails
r10: gi:Guestinfo
Dashed elements
N i represent minimal rule |

Figure 3: Original rule given by AGG Vs. successful and unsuccessful graphs

Info are Info are complex
avalible to extract

D=4 D=5 D=6 D=4 D=5 D
| | |

¢e)
¢

LHS of Max-Abstract-Rule Current-pre-graph

Figure 4: Complex decision to define the accurate intersection’

queries. Similar motivations have led to the use of relational databases in graph transformation
before, e.g., in [VFV06].

We initialise the computation of intersections using the smallest successful pair of graphs,
called MAR for Maximal Abstract Rule, which is obviously an upper bound for the intersection,
see line 4. We define a specific node/edge signature to make graph elements distinguishable
when matching. The signature is a collection of node/edge types, their distance and abstract

5/12 Volume 58 (2013)



Learning Rules from Observations of Graph Transformations Eﬁ

ids. The distance is the shortest path to an element in the minimal rule. In Figure 3 (B) this is
indicated by the numbers in the first pre-graph. The abstract id is a unique identifier in MAR.

For each successful example within the first loop in lines 7-8 we confirm that its minimal rule is
isomorphic to that of MAR. If this is not the case, the transformations are not all produced by the
same rule, which contradicts our assumption that the examples are consistent. Once the minimal
rules are matched, the next step is to discover the intersection of their additional contexts in lines
9-12. The difficulty at this point arises when matching contexts that have similar signatures.
Figure 4 describes such a situation, where it is unclear which node or edge to remove to arrive at
the intersection. We overcome this problem by marking the contexts and leaving the decision to
the step of updating MAR after finishing the second loop in line 13.

Another difficulty is to define the starting point for matching failed graphs. In successful ex-
amples, we start matching from the elements of the minimal rule. In failure cases, only individual
graphs G are available. Therefore, we have to assume that each possible match of the left-hand
side of MAR’s minimal rule that satisfied the gluing conditions is a possible starting point. Then
we can use the same mechanism for matching as in the successful examples, but with the purpose
of discovering missing context(s), see lines 14-18.

Algorithm 1 Learning Graph Transformation Rules

Inputs: SSG [G,H] is a set of successful pairs of graphs and SFG [G] is a set of unsuccessful individual graphs
Outputs: minRule, maxRule and requiredRule

Begin
1: initialise SSG and SFG after transferring all examples from GGX to relational DB structure.
: discover the minRule for each G = H in SSG
. set the distances for each node(s) and edge(s) € G in SSG
: let MAR Max-Abstract-Rule = the smallest pair of graphs in SSG
: for each G and H in SSG where G and H # MAR do
for each node and edge v in LHS of MAR (ascending order by distances) do
if v.distance = 0 then
confirm matching the minRule as a sub-graph isomorphism
such that minG — LHS of minMAR and minH — RHS of minMAR
Otherwise break as the rules are not consistent
9: if v.distance >0 then
10: discover the intersections of the contexts between L of MAR N G
11: set pD = the possibility of deleting contexts in MAR that are out of the intersection
12: if pD=1 then remove context Otherwise set remove++ and mark the contexts
13: update MAR() delete and update the context(s) that has been remarked in line 12
14: for each fG in SFG do
15:  discover all possible subsets € fG that can match exactly the LHS of minMAR
assume matching each subset to be the LHS of the min-fG and use the same mechanism from line 9 to 12 but
with different conditions :
16:  if pD >0 set context.isRequired=true in MAR. As this is a missing context in fG which would give a strong
reason that the context is required to be exists to avoid such failure.
17: if pD <0 generate a NAC Negative Application Condition for the rule
18: set minRule= MAR where its node(s) and edge(s) must be at distance=0
19: set maxRule= MAR
20: set requiredRule=minRule +MAR where its nodes and edges are specified to be required (line 16)
End

Proc. GTVMT 2013 6/12



Eg ECEASST

As a result, the relationships between minimal, maximal and required rules and the original
m(p) is min(p) Creq(p) C m(p) € max(p). The example in Figure 3 illustrates the possibility
of req(p) C m(p) as req(p) does not contain h:Hotel.

4 Evaluation

In this section, we apply our learning algorithm to the Hotel case study [HKM11]. The original
system consists of nine rules, but we only use the subset of bookRoom, freeRoom, occupyRoom,
checkout because we are not interested in conditions or computations on attributes. In Figure 5, a
registered guest can book or free a room, adding or removing bookinglnfo edges between Room
and Guest nodes. If a room is booked, it can be occupied and freed by checking out.

We conduct two types of experiments, to evaluate scalability with respect to graph size and
number of examples considered. Scalability is significant here because, in contrast to work on
learning model transformations [Var06, BV(09] our examples are not generated manually, but by
observing a running implementation. That means, it may require a large number of examples to
obtain enough coverage of the behaviour to allow accurate learning. We mimic this situation by
generating examples using AGG.

For the first experiment, we have generated 12 examples based on graphs of increasing size
and, while running the algorithm, recorded the time it takes to load them into the database,
construct the minimal rule, calculate the distance of each node and edge to an element in the
minimal rule, derive the maximal and required rules, and the total time. The results, reported in
Table 1 and visualised in Figure 6, show that significant time is spent in loading the graphs into
the database, calculating distances and minimal rules, while the more sophisticated computations
of maximal and required rules are less significant. This is down to an efficient representation
of graphs and rules in the database, which takes time to set up but benefits subsequent steps.
Since we are planning to extend the approach towards more advanced features, such as negative
application conditions or multi-objects, this is a useful observation. Nevertheless, the overall
effort is exponential in the size n of the graph, very roughly 2/599-2 seconds.

manages manages

l has l

manages

bookingInfo

has

has billDetails

1:Hotel| bookinglnfo
ha

BookRoom FreeRoom checkOut

S has

Figure 5: Main rules of Hotel system: BookRoom, FreeRoom and Checkout rules

The second experiment, intended to verify ability to handle significant numbers of examples, is
conducted by generating, using AGG, a sequence of transformations, choosing rules and matches

7/12 Volume 58 (2013)



Learning Rules from Observations of Graph Transformations

i

graph size execution time (seconds)
No - — - -
pre [ post [ total size | load [ minimal rule [ distance [ max+req rule [ total time

1 12 15 27 0.5650323 | 0.4280245 0.3270187 | 0.9730556 2.2931311
2 16 19 35 0.6020344 | 0.4260244 0.3280188 | 1.6990972 3.0551748
3 16 19 35 0.6030345 | 0.4290245 0.3270187 | 0.7990458 2.1581235
4 18 21 38 0.6200355 | 0.4240242 0.3290188 | 0.8210471 2.1941256
5 19 22 41 0.6450369 | 0.4250243 0.4090234 | 0.8120465 2.2911311
6 20 23 43 0.6550375 | 0.4310246 0.4170239 | 0.7980457 23011317
7 24 27 51 0.6850392 | 0.4320247 0.3280188 | 0.8190468 2.2641295
8 38 41 79 0.8370479 | 0.4310247 0.3280187 | 0.8070462 2.4031375
9 74 77 151 1.2210699 | 0.4390251 0.3380193 | 0.8060461 2.8041604
10 | 1126 1129 2255 12.228699 | 1.8081034 2.762158 0.9160524 17.715013
11 | 2074 2077 4151 22.084263 | 5.3053035 7.7954458 | 0.9640552 36.149068
12 | 12074 | 12077 | 24151 125.66019 | 157.04499 294.58885 | 1.7420996 579.03613
13 | 20074 | 20077 | 40151 204.91972 | 433.91382 698.92598 | 2.6491515 1340.4087

Execution time to analyse 13 successful examples is approximately 33.251 minutes 1995.0731

1024
512
256
128

64
32
16

0.5
0.25

Table 1: Performance by graph size

Execution time in seconds

X

R4
-
-

& ) .
— —4----"
‘__1;;*4_ g 7&

s |

0

10000 20000 30000 40000 50000

Graph size

- (Max) and (req) rules

= Distancce
-a-Min rule
-e-Load time

Figure 6: Performance by graph size

at random and recording for successful steps the input and output graphs and for any failed
attempt at finding a match for a chosen rule, the input graph. In Table 2 we report for batch sizes
of 200 to 1000 graphs the time for loading, minimal rule and distance calculation as well as for
construction of maximal and required rules. The actual number of examples considered is shown
under number of graphs. For example, in the first row, out of the first 200 steps or failed attempts
in the sequence, 116 where using one of the four rules of interest. The relationship between
batch size and time, visualised in Figure 7, is linear up to a batch size of 800, but significantly
larger batches might cause problems.

Proc. GTVMT 2013

8/12



Eg ECEASST

Execution time in seconds
3000 /
2500
/ Total Time
2000 /
1500 / #(Max) and (req) rules
1000
/ -+Loading, (min)rules
500

and distance

0 : T : T : T : T : {
200 400 600 800 1000
Number of graphs

Figure 7: Performance by batch size

batch size | relevant number | loading, min rule, distance | max+req rules | total time

200 116 195.8182 89.9412 285.7594

400 238 337.6163 183.9155 521.5319

600 357 514.6824 257.8967 772.5791

800 453 729.1207 258.0947 987.2154

1000 565 1057.4894 438.11 1495.5995
Time measured in seconds

Table 2: Performance by batch size

This is important because of the trade-off between the accuracy of the rules constructed (likely
to be improved with more examples of more divers context) and the effort in processing large
batches. Our finding in this experiment is that the majority of examples have very similar con-
texts, but a larger batch size will increase the probability of finding effective examples.

5 Related Work

The concept of learning rules from transformations has been suggested in a number of applica-
tion areas, including the modelling of biochemical reactions [YHC09] and model transforma-
tions [DDF " 11]. Although similar with respect to the overall aim of discovering rules, the chal-
lenges vary based on the nature of the graphs considered, e.g., directed, attributed or undirected
graphs, the availability of typing or identity information, etc. In biochemical reactions [YHCO09],
the source and target graphs represent networks of biomolecules. The authors aim to discover
rules modelling reactions that change the graph structure over time, based on positive examples
only. They extract the minimal rule by discovering the best sub-graph match and adopt a statis-
tical approach to rate the context. Our approach is different in that we deal with uncertainty not
statistically, but by distinguishing a minimal and maximal rule and extending the minimal rule

9/12 Volume 58 (2013)



Learning Rules from Observations of Graph Transformations E}

to a required one using negative examples.

When considering approaches to learning model transformations [KLR " 12], we have to dis-
tinguish two types of transformations [MVO06], i.e., in place where source and target have the
same metamodel, as in animating object diagrams by transforming them from one state to the
next, and out place, where the metamodels are different, such as when transforming UML class
diagrams to relation schemata. However, in place can implement out place by creating a joint
metamodel. For learning model transformations, [DDF ' 11] represent input and output mod-
els as meta-model instances, supporting concepts such as attributes, inheritance, aggregation,
etc. Their transformations are out place, so an input-output pair does not represent the result of
applying a single rule, but potentially a process consisting of several steps.

[FSB12, Var06, BV(09] also propose the learning of out place transformation rules. Therefore,
they require a mapping between metamodels to specify the relation between source and target
models. Being of the in place variety, our metamodel (type graph) is always the same and no
mapping is required. [LWKI10] also addresses the learning of in place model transformations.
This approach is interactive, requiring user involvement to confirm the rules proposed by the
algorithm. Our approach does not have direct user involvement and uses positive and negative
examples for learning. More substantially, our application scenario is not one of a small num-
ber of carefully hand-crafted examples, but of large numbers of observations extracted from a
running system. Therefore, scalability and the ability to deal with example sets providing in-
complete coverage are important.

An algorithmic problem closely related to ours is graph pattern discovery. Current approaches
can be classified into statistical and node signature-based solutions. Finding graph patterns by
statistical means is popular in machine learning algorithms [QHJH10]. They can produce a large
variance in results, depending on the frequency of a pattern. For instance, an object that is not
part of the rule, but always present in the context, would be considered an important element of
the rule. [QHJHI10] apply decision tree learning, starting to discover matches from predefined
anchor points in a hierarchical search pattern, resulting in exponential effort.

The use of node signatures can reduce this effort, but the problem remains NP-complete.
[CESV04] discusses research in exact and best graph pattern matching, most of it limited to a
specific domain. A crucial point in graph or sub-graph matching is how to make nodes dis-
tinguishable when they are candidates for possible matches. For example in [JMTO09], a node
signature for attributed graphs is based on node/edge types and node attribute(s). Our node sig-
natures do not include attribute(s), but distance information, which is only available due to the
construction of minimal rules before matching additional context.

6 Conclusion

Having made first steps towards learning rules from examples of transformations, there are obvi-
ous limitations. First, our learning algorithm will not support disconnected context elements, i.e.,
elements not reachable from the minimal rule. This makes matching the context more efficient,
but limits the usability of the approach. A generalisation is possible, but is likely to be expen-
sive. A compromise may be to consider rule parameters and require that all context should be
reachable from the minimal rule or a rule parameter. A related limitation is the handling of idle

Proc. GTVMT 2013 10/12



Eg ECEASST

rules, sometimes used as queries or property rules. For cases where the graph does not change
during the transformation, the minimal rule is empty and thus all context is disconnected. Inde-
pendently, rules with more advance features should be supported, including negative application
conditions, multi objects, attributes, etc.

Our approach is intended for reverse engineering applications in the context of model-based
testing. In such a scenario it is meaningful to consider active learning, e.g., by creating additional
examples in the form of test cases and observing the system’s reaction, for example in order to
verify the required context in case there are not enough negative examples.

Acknowledgement We are grateful to Neil Walkinshaw for his advice on machine learning
and its use in testing.

Bibliography

[AGG12] Attributed Graph Grammar System. 2012.
http://user.cs.tu-berlin.de/~gragra/agg/

[BHE(Q9] D. Bisztray, R. Heckel, H. Ehrig. Verification of Architectural Refactorings: Rule
Extraction and Tool Support. Proceedings of the Doctoral Symposium at the Inter-

national Conference on Graph Transformation - Electronic Communications of the
EASST 16, 2009.

[BMT"12] H. Brito, H. Marques-Neto, R. Terra, H. Rocha, M. Valente. On-the-fly extraction
of hierarchical object graphs. Journal of the Brazilian Computer Society, pp. 1-13,
2012.

[BVO09] Z. Balogh, D. Varr. Model transformation by example using inductive logic pro-
gramming. International Journal - Software and Systems Modeling 8(3):347-364,
2000.

[CESV04] D. Conte, P. Foggia, C. Sansone, M. Vento. Thirty years of graph matching in pattern
recognition. International journal of pattern recognition and artificial intelligence
18(03):265-298, 2004.

[DDF'11] X. Dolques, A. Dogui, J.-R. Falleri, M. Huchard, C. Nebut, F. Pfister. Easing model
transformation learning with automatically aligned examples. In Proceedings of the

7th European conference on Modelling foundations and applications. ECMFA’11,
pp- 189-204. Springer-Verlag, Berlin, Heidelberg, 2011.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., pp 12, 21,22, Secaucus, NJ, USA, 2006.

[FSB12] M. Faunes, H. Sahraoui, M. Boukadoum. Generating model transformation rules
from examples using an evolutionary algorithm. In Proceedings of the 27th

11/12 Volume 58 (2013)


http://user.cs.tu-berlin.de/~gragra/agg/

Learning Rules from Observations of Graph Transformations Eﬁ

[HKM11]

[JMTO09]

[KLR*12]

[LWK10]

[MVO06]

[QHJH10]

[Var06]

[VFV06]

[YHCO09]

IEEE/ACM International Conference on Automated Software Engineering. ASE
2012, pp. 250-253. ACM, New York, NY, USA, 2012.

R. Heckel, T. A. Khan, R. Machado. Towards Test Coverage Criteria for Visual
Contracts. Proceedings of the Tenth International Workshop on Graph Transforma-
tion and Visual Modeling Techniques GTVMT - Electronic Communications of the
EASST 41, 2011.

S. Jouili, I. Mili, S. Tabbone. Attributed graph matching using local descriptions. In
Advanced Concepts for Intelligent Vision Systems - Acivs 2009. Pp. 89-99. Springer,
2000.

G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, M. Wimmer. Concep-
tual Modelling and Its Theoretical Foundations. In Diisterhéft et al. (eds.). Chap-
ter Model transformation by-example: a survey of the first wave, pp. 197-215.
Springer-Verlag, Berlin, Heidelberg, 2012.

P. Langer, M. Wimmer, G. Kappel. Model-to-Model Transformations By Demon-
stration. In Tratt and Gogolla (eds.), Proceedings of the Third international confer-
ence on Theory and practice of model transformations. Lecture Notes in Computer
Science 6142, pp. 153-167. Springer Berlin Heidelberg, 2010.

T. Mens, P. Van Gorp. A Taxonomy of Model Transformation. Electron. Notes
Theor. Comput. Sci. 152:125-142, Mar. 2006.

M. Qiu, H. Hu, Q. Jiang, H. Hu. A New Approach of Graph Isomorphism Detection
Based on Decision Tree. In Education Technology and Computer Science (ETCS),
2010 Second International Workshop on. Volume 2, pp. 32-35. 2010.

D. Varr. Model Transformation By Example. In In Proceedings of the ACM/IEEE
9th International Conference on Model Driven Engineering Languages and Systems
(MoDELS/UML). Pp. 410-424. Springer, 2006.

G. Varr, K. Friedl, D. Varr. Implementing a Graph Transformation Engine in Rela-
tional Databases. International Journal - Software and Systems Modeling 5(3):313—
341, 2006.

C. h. You, L. B. Holder, D. J. Cook. Learning patterns in the dynamics of biological
networks. In Proceedings of the 15th ACM SIGKDD International conference on
Knowledge discovery and data mining. KDD °09, pp. 977-986. ACM, New York,
NY, USA, 2009.

Proc. GTVMT 2013 12/12



	Introduction
	Problem
	Algorithm
	Evaluation
	Related Work
	Conclusion

